Suppr超能文献

在二硫化钼横截面中剪切应力诱导的层间滑动的原位 TEM 表征。

In situ TEM characterization of shear-stress-induced interlayer sliding in the cross section view of molybdenum disulfide.

机构信息

Materials Science and Engineering Department, The University of Texas at Dallas , 800 West Campbell Road, Richardson, Texas 75080, United States.

出版信息

ACS Nano. 2015 Feb 24;9(2):1543-51. doi: 10.1021/nn506052d. Epub 2014 Dec 17.

Abstract

The experimental study of interlayer sliding at the nanoscale in layered solids has been limited thus far by the incapability of mechanical and imaging probes to simultaneously access sliding interfaces and overcome through mechanical stimulus the van der Waals and Coulombic interactions holding the layers in place. For this purpose, straightforward methods were developed to achieve interlayer sliding in molybdenum disulfide (MoS2) while under observation within a transmission electron microscope. A method to manipulate, tear, and slide free-standing atomic layers of MoS2 is demonstrated by electrostatically coupling it to an oxidized tungsten probe attached to a micromanipulator at a bias above ±7 V. A first-principles model of a MoS2 bilayer polarized by a normal electric field of 5 V/nm, emanating from the tip, demonstrates the appearance of a periodic negative sliding potential energy barrier when the layers slide into the out-of-registry stacking configuration, hinting at electrostatic gating as a means of modifying the interlayer tribology to facilitate shear exfoliation. A method to shear focused ion beam prepared MoS2 cross section samples using a nanoindenter force sensor is also demonstrated, allowing both the observation and force measurement of its interlayer dynamics during shear-induced sliding. From this experiment, the zero normal load shear strength of MoS2 can be directly obtained: 25.3 ± 0.6 MPa. These capabilities enable the site-specific mechanical testing of dry lubricant-based nanoelectromechanical devices and can lead to a better understanding of the atomic mechanisms from which the interlayer tribology of layered materials originates.

摘要

迄今为止,由于机械和成像探针无法同时访问滑动界面,并且无法克服范德华力和库仑力来保持层状物质的位置,因此在纳米尺度上对层状固体中的层间滑动进行实验研究受到了限制。为此,开发了一些简单的方法,以便在透射电子显微镜下观察时实现二硫化钼(MoS2)中的层间滑动。通过将其静电耦合到附着在微操纵器上的氧化钨探针上来操纵、撕裂和滑动独立原子层 MoS2,从而实现了这种方法。该方法的原理是在偏置为±7 V 以上时,利用源自尖端的 5 V/nm 正常电场来极化 MoS2 双层,当层滑入非对准堆叠配置时,会出现周期性的负滑动位能势垒,这表明静电门控可以作为一种修改层间摩擦学以促进剪切剥离的方法。还展示了一种使用纳米压痕力传感器剪切聚焦离子束制备的 MoS2 横截面样品的方法,从而可以在剪切诱导滑动期间观察和测量其层间动力学。通过该实验,可以直接获得 MoS2 的零法向负载剪切强度:25.3 ± 0.6 MPa。这些功能使基于干润滑剂的纳米机电设备的特定位置机械测试成为可能,并可以更好地理解分层材料的层间摩擦学的原子机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验