Babuska Tomas F, Curry John F, Dugger Michael T, Lu Ping, Xin Yan, Klueter Sam, Kozen Alexander C, Grejtak Tomas, Krick Brandon A
FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States.
Material, Physical and Chemical Sciences Center Sandia National Laboratories, Albuquerque, New Mexico 87123, United States.
ACS Appl Mater Interfaces. 2022 Mar 23;14(11):13914-13924. doi: 10.1021/acsami.1c24931. Epub 2022 Mar 10.
This work investigates the role of water and oxygen on the shear-induced structural modifications of molybdenum disulfide (MoS) coatings for space applications and the impact on friction due to oxidation from aging. We observed from transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) that sliding in both an inert environment (i.e., dry N) or humid lab air forms basally oriented (002) running films of varying thickness and structure. Tribological testing of the basally oriented surfaces created in dry N and air showed lower initial friction than a coating with an amorphous or nanocrystalline microstructure. Aging of coatings with basally oriented surfaces was performed by heating samples at 250 °C for 24 h. Post aging tribological testing of the as-deposited coating showed increased initial friction and a longer transition from higher friction to lower friction (i.e., run-in) due to oxidation of the surface. Tribological testing of raster patches formed in dry N and air both showed an improved resistance to oxidation and reduced initial friction after aging. The results from this study have implications for the use of MoS-coated mechanisms in aerospace and space applications and highlight the importance of preflight testing. Preflight cycling of components in inert or air environments provides an oriented surface microstructure with fewer interaction sites for oxidation and a lower shear strength, reducing the initial friction coefficient and oxidation due to aging or exposure to reactive species (i.e., atomic oxygen).
这项工作研究了水和氧气在用于太空应用的二硫化钼(MoS)涂层的剪切诱导结构改性中的作用,以及老化氧化对摩擦的影响。我们通过透射电子显微镜(TEM)和X射线光电子能谱(XPS)观察到,在惰性环境(即干燥氮气)或潮湿实验室空气中滑动会形成不同厚度和结构的基面取向(002)连续薄膜。在干燥氮气和空气中形成的基面取向表面的摩擦学测试表明,其初始摩擦力低于具有非晶或纳米晶微观结构的涂层。通过在250°C下加热样品24小时对具有基面取向表面的涂层进行老化处理。对沉积态涂层进行老化后的摩擦学测试表明,由于表面氧化,初始摩擦力增加,从高摩擦到低摩擦的转变(即磨合)时间延长。在干燥氮气和空气中形成的光栅斑块的摩擦学测试均表明,老化后抗氧化性提高,初始摩擦力降低。这项研究的结果对航空航天和太空应用中使用MoS涂层机构具有启示意义,并突出了飞行前测试的重要性。在惰性或空气环境中对部件进行飞行前循环处理可提供具有较少氧化相互作用位点和较低剪切强度的取向表面微观结构,从而降低初始摩擦系数以及因老化或暴露于活性物种(即原子氧)而导致的氧化。