Samanipour Saer, Dimitriou-Christidis Petros, Gros Jonas, Grange Aureline, Samuel Arey J
Environmental Chemistry Modeling Laboratory (LMCE), ENAC, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Environmental Chemistry Modeling Laboratory (LMCE), ENAC, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.
J Chromatogr A. 2015 Jan 2;1375:123-39. doi: 10.1016/j.chroma.2014.11.049. Epub 2014 Nov 25.
Comprehensive two-dimensional gas chromatography (GC×GC) is used widely to separate and measure organic chemicals in complex mixtures. However, approaches to quantify analytes in real, complex samples have not been critically assessed. We quantified 7 PAHs in a certified diesel fuel using GC×GC coupled to flame ionization detector (FID), and we quantified 11 target chlorinated hydrocarbons in a lake water extract using GC×GC with electron capture detector (μECD), further confirmed qualitatively by GC×GC with electron capture negative chemical ionization time-of-flight mass spectrometer (ENCI-TOFMS). Target analyte peak volumes were determined using several existing baseline correction algorithms and peak delineation algorithms. Analyte quantifications were conducted using external standards and also using standard additions, enabling us to diagnose matrix effects. We then applied several chemometric tests to these data. We find that the choice of baseline correction algorithm and peak delineation algorithm strongly influence the reproducibility of analyte signal, error of the calibration offset, proportionality of integrated signal response, and accuracy of quantifications. Additionally, the choice of baseline correction and the peak delineation algorithm are essential for correctly discriminating analyte signal from unresolved complex mixture signal, and this is the chief consideration for controlling matrix effects during quantification. The diagnostic approaches presented here provide guidance for analyte quantification using GC×GC.
全二维气相色谱法(GC×GC)被广泛用于分离和测定复杂混合物中的有机化合物。然而,对实际复杂样品中分析物进行定量的方法尚未得到严格评估。我们使用与火焰离子化检测器(FID)联用的GC×GC对一种认证柴油燃料中的7种多环芳烃进行了定量,并且使用配有电子捕获检测器(μECD)的GC×GC对湖水提取物中的11种目标氯代烃进行了定量,并用配有电子捕获负化学电离飞行时间质谱仪(ENCI-TOFMS)的GC×GC进行了定性确认。使用几种现有的基线校正算法和峰识别算法来确定目标分析物的峰面积。使用外标法以及标准加入法对分析物进行定量,从而使我们能够诊断基质效应。然后我们对这些数据应用了几种化学计量学测试。我们发现基线校正算法和峰识别算法的选择对分析物信号的重现性、校准偏移误差、积分信号响应的比例以及定量的准确性有很大影响。此外,基线校正和峰识别算法的选择对于从未解析的复杂混合物信号中正确区分分析物信号至关重要,这是定量过程中控制基质效应的主要考虑因素。这里介绍的诊断方法为使用GC×GC进行分析物定量提供了指导。