Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, 344 LeBow Engineering Building, Philadelphia, Pennsylvania 19104, USA.
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
Nat Commun. 2014 Dec 15;5:5710. doi: 10.1038/ncomms6710.
Control of atomic structure, namely the topology of the corner-connected metal-oxygen octahedra, has emerged as an important route to tune the functional properties at oxide interfaces. Here we investigate isovalent manganite superlattices (SLs), [(La(0.7)Sr(0.3)MnO(3))n/(Eu(0.7)Sr(0.3)MnO(3))n] × m, as a route to spatial control over electronic bandwidth and ferromagnetism through the creation of octahedral superstructures. Electron energy loss spectroscopy confirms a uniform Mn valence state throughout the SLs. In contrast, the presence of modulations of the MnO(6) octahedral rotations along the growth direction commensurate with the SL period is revealed by scanning transmission electron microscopy and X-ray diffraction. We show that the Curie temperatures of the constituent materials can be systematically engineered via the octahedral superstructures leading to a modulated magnetization in samples where the SL period is larger than the interfacial octahedral coupling length scale, whereas a single magnetic transition is observed in the short-period SLs.
控制原子结构,即角连接的金属-氧八面体的拓扑结构,已成为调节氧化物界面功能特性的重要途径。在这里,我们研究等电子锰酸盐超晶格[(La(0.7)Sr(0.3)MnO(3))n/(Eu(0.7)Sr(0.3)MnO(3))n]×m,作为通过创建八面体超结构来实现对电子带宽和铁磁性的空间控制的途径。电子能量损失光谱证实超晶格中的 Mn 价态均匀。相比之下,通过扫描透射电子显微镜和 X 射线衍射发现,MnO(6)八面体旋转在生长方向上存在与超晶格周期相匹配的调制,这揭示了超晶格中存在调制。我们表明,通过八面体超结构可以系统地设计组成材料的居里温度,从而导致在超晶格周期大于界面八面体耦合长度尺度的样品中产生调制的磁化,而在短周期超晶格中观察到单个磁转变。