Suppr超能文献

高度应变铁弹 LaCoO 薄膜中出现的紧急且稳定的铁磁-绝缘态。

Emergent and robust ferromagnetic-insulating state in highly strained ferroelastic LaCoO thin films.

机构信息

College of Physics, MIIT Key Laboratory of Aerospace Information Materials and Physics, State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, 211106, Nanjing, China.

Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany.

出版信息

Nat Commun. 2023 Jun 19;14(1):3638. doi: 10.1038/s41467-023-39369-6.

Abstract

Transition metal oxides are promising candidates for the next generation of spintronic devices due to their fascinating properties that can be effectively engineered by strain, defects, and microstructure. An excellent example can be found in ferroelastic LaCoO with paramagnetism in bulk. In contrast, unexpected ferromagnetism is observed in tensile-strained LaCoO films, however, its origin remains controversial. Here we simultaneously reveal the formation of ordered oxygen vacancies and previously unreported long-range suppression of CoO octahedral rotations throughout LaCoO films. Supported by density functional theory calculations, we find that the strong modification of Co 3d-O 2p hybridization associated with the increase of both Co-O-Co bond angle and Co-O bond length weakens the crystal-field splitting and facilitates an ordered high-spin state of Co ions, inducing an emergent ferromagnetic-insulating state. Our work provides unique insights into underlying mechanisms driving the ferromagnetic-insulating state in tensile-strained ferroelastic LaCoO films while suggesting potential applications toward low-power spintronic devices.

摘要

过渡金属氧化物由于其通过应变、缺陷和微观结构可以有效调控的迷人性质,有望成为下一代自旋电子器件的候选材料。铁弹性 LaCoO 就是一个极好的例子,其体相具有顺磁性。相比之下,拉伸应变的 LaCoO 薄膜中却观察到了出人意料的铁磁性,但它的起源仍存在争议。在这里,我们同时揭示了有序氧空位的形成以及以前未报道过的 LaCoO 薄膜中 CoO 八面体旋转的长程抑制。基于密度泛函理论计算,我们发现 Co 3d-O 2p 杂化的强烈修饰伴随着 Co-O-Co 键角和 Co-O 键长的增加,从而削弱了晶体场分裂,促进了 Co 离子有序的高自旋态,导致出现了一种新的亚铁磁绝缘态。我们的工作为拉伸铁弹性 LaCoO 薄膜中亚铁磁绝缘态的驱动机制提供了独特的见解,同时也为低功耗自旋电子器件的应用提供了可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae78/10279738/b4c00aaf2b8f/41467_2023_39369_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验