Suppr超能文献

拟南芥中含 Kelch 结构域的 F-box 蛋白的下调增强了(多)酚类物质的产生及对紫外线辐射的耐受性。

Down-regulation of Kelch domain-containing F-box protein in Arabidopsis enhances the production of (poly)phenols and tolerance to ultraviolet radiation.

作者信息

Zhang Xuebin, Gou Mingyue, Guo Chunrong, Yang Huijun, Liu Chang-Jun

机构信息

Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York 11973 (X.Z., M.G., H.Y., C.-J.L.);College of Art and Science, Shanxi Agriculture University, Taigu, Shanxi 030801, People's Republic of China (C.G.); andBiochemistry and Cell Biology Department, Stony Brook University, Stony Brook, New York 11972 (H.Y.).

Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York 11973 (X.Z., M.G., H.Y., C.-J.L.);College of Art and Science, Shanxi Agriculture University, Taigu, Shanxi 030801, People's Republic of China (C.G.); andBiochemistry and Cell Biology Department, Stony Brook University, Stony Brook, New York 11972 (H.Y.)

出版信息

Plant Physiol. 2015 Feb;167(2):337-50. doi: 10.1104/pp.114.249136. Epub 2014 Dec 12.

Abstract

Phenylpropanoid biosynthesis in plants engenders myriad phenolics with diverse biological functions. Phenylalanine ammonia-lyase (PAL) is the first committed enzyme in the pathway, directing primary metabolic flux into a phenylpropanoid branch. Previously, we demonstrated that the Arabidopsis (Arabidopsis thaliana) Kelch domain-containing F-box proteins, AtKFB01, AtKFB20, and AtKFB50, function as the negative regulators controlling phenylpropanoid biosynthesis via mediating PAL's ubiquitination and subsequent degradation. Here, we reveal that Arabidopsis KFB39, a close homolog of AtKFB50, also interacts physically with PAL isozymes and modulates PAL stability and activity. Disturbing the expression of KFB39 reciprocally affects the accumulation/deposition of a set of phenylpropanoid end products, suggesting that KFB39 is an additional posttranslational regulator responsible for the turnover of PAL and negatively controlling phenylpropanoid biosynthesis. Furthermore, we discover that exposure of Arabidopsis to ultraviolet (UV)-B radiation suppresses the expression of all four KFB genes while inducing the transcription of PAL isogenes; these data suggest that Arabidopsis consolidates both transcriptional and posttranslational regulation mechanisms to maximize its responses to UV light stress. Simultaneous down-regulation of all four identified KFBs significantly enhances the production of (poly)phenols and the plant's tolerance to UV irradiation. This study offers a biotechnological approach for engineering the production of useful phenolic chemicals and for increasing a plant's resistance to environmental stress.

摘要

植物中的苯丙烷生物合成产生了具有多种生物学功能的无数酚类物质。苯丙氨酸解氨酶(PAL)是该途径中的第一个关键酶,将初级代谢流导向苯丙烷分支。此前,我们证明了拟南芥中含 Kelch 结构域的 F 盒蛋白 AtKFB01、AtKFB20 和 AtKFB50 通过介导 PAL 的泛素化及随后的降解,作为控制苯丙烷生物合成的负调控因子发挥作用。在此,我们揭示了 AtKFB50 的紧密同源物拟南芥 KFB39 也与 PAL 同工酶发生物理相互作用,并调节 PAL 的稳定性和活性。干扰 KFB39 的表达会相互影响一组苯丙烷终产物的积累/沉积,这表明 KFB39 是另一个负责 PAL 周转并负调控苯丙烷生物合成的翻译后调控因子。此外,我们发现拟南芥暴露于紫外线 B(UV-B)辐射下会抑制所有四个 KFB 基因的表达,同时诱导 PAL 同工基因的转录;这些数据表明拟南芥整合了转录和翻译后调控机制,以最大程度地响应紫外线胁迫。同时下调所有四个已鉴定的 KFB 可显著提高(多)酚的产量以及植物对紫外线辐射的耐受性。这项研究为工程化生产有用的酚类化学品以及增强植物对环境胁迫的抗性提供了一种生物技术方法。

相似文献

2
Post-translational and transcriptional regulation of phenylpropanoid biosynthesis pathway by Kelch repeat F-box protein SAGL1.
Plant Mol Biol. 2019 Jan;99(1-2):135-148. doi: 10.1007/s11103-018-0808-8. Epub 2018 Dec 12.
4
Modulation of auxin and cytokinin responses by early steps of the phenylpropanoid pathway.
BMC Plant Biol. 2018 Nov 12;18(1):278. doi: 10.1186/s12870-018-1477-0.
5
Identification of tomato F-box proteins functioning in phenylpropanoid metabolism.
Plant Mol Biol. 2024 Jul 12;114(4):85. doi: 10.1007/s11103-024-01483-4.
6
Glucosinolate and phenylpropanoid biosynthesis are linked by proteasome-dependent degradation of PAL.
New Phytol. 2020 Jan;225(1):154-168. doi: 10.1111/nph.16108. Epub 2019 Sep 11.
7
Arabidopsis SnRK1 negatively regulates phenylpropanoid metabolism via Kelch domain-containing F-box proteins.
New Phytol. 2021 Mar;229(6):3345-3359. doi: 10.1111/nph.17121. Epub 2020 Dec 31.
8
A Proteolytic Regulator Controlling Chalcone Synthase Stability and Flavonoid Biosynthesis in Arabidopsis.
Plant Cell. 2017 May;29(5):1157-1174. doi: 10.1105/tpc.16.00855. Epub 2017 Apr 26.
10
Both cyclic-AMP and cyclic-GMP can act as regulators of the phenylpropanoid pathway in Arabidopsis thaliana seedlings.
Plant Physiol Biochem. 2013 Sep;70:142-9. doi: 10.1016/j.plaphy.2013.05.029. Epub 2013 May 31.

引用本文的文献

3
Evolution of aromatic amino acid metabolism in plants: a key driving force behind plant chemical diversity in aromatic natural products.
Philos Trans R Soc Lond B Biol Sci. 2024 Nov 18;379(1914):20230352. doi: 10.1098/rstb.2023.0352. Epub 2024 Sep 30.
4
MetMiner: A user-friendly pipeline for large-scale plant metabolomics data analysis.
J Integr Plant Biol. 2024 Nov;66(11):2329-2345. doi: 10.1111/jipb.13774. Epub 2024 Sep 10.
5
Identification of tomato F-box proteins functioning in phenylpropanoid metabolism.
Plant Mol Biol. 2024 Jul 12;114(4):85. doi: 10.1007/s11103-024-01483-4.
7
Salicylic acid in plant immunity and beyond.
Plant Cell. 2024 May 1;36(5):1451-1464. doi: 10.1093/plcell/koad329.
8
Quantitative Time-Course Analysis of Osmotic and Salt Stress in Arabidopsis thaliana Using Short Gradient Multi-CV FAIMSpro BoxCar DIA.
Mol Cell Proteomics. 2023 Nov;22(11):100638. doi: 10.1016/j.mcpro.2023.100638. Epub 2023 Sep 12.
9
Anthocyanin metabolism in Nelumbo: translational and post-translational regulation control transcription.
BMC Plant Biol. 2023 Jan 30;23(1):61. doi: 10.1186/s12870-023-04068-3.

本文引用的文献

1
Multifaceted regulations of gateway enzyme phenylalanine ammonia-lyase in the biosynthesis of phenylpropanoids.
Mol Plant. 2015 Jan;8(1):17-27. doi: 10.1016/j.molp.2014.11.001. Epub 2014 Dec 11.
2
Engineering anthocyanin biosynthesis in plants.
Curr Opin Plant Biol. 2014 Jun;19:81-90. doi: 10.1016/j.pbi.2014.05.011. Epub 2014 Jun 5.
5
Anthocyanins double the shelf life of tomatoes by delaying overripening and reducing susceptibility to gray mold.
Curr Biol. 2013 Jun 17;23(12):1094-100. doi: 10.1016/j.cub.2013.04.072. Epub 2013 May 23.
6
The interface between plant metabolic engineering and human health.
Curr Opin Biotechnol. 2013 Apr;24(2):344-53. doi: 10.1016/j.copbio.2012.11.005. Epub 2012 Dec 13.
7
Flavonoids as antioxidants in plants: location and functional significance.
Plant Sci. 2012 Nov;196:67-76. doi: 10.1016/j.plantsci.2012.07.014. Epub 2012 Aug 11.
9
Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases.
Antioxid Redox Signal. 2013 May 10;18(14):1818-92. doi: 10.1089/ars.2012.4581. Epub 2012 Aug 27.
10
Anthocyanins.
Curr Biol. 2012 Mar 6;22(5):R147-50. doi: 10.1016/j.cub.2012.01.021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验