Zhang Xuebin, Gou Mingyue, Guo Chunrong, Yang Huijun, Liu Chang-Jun
Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York 11973 (X.Z., M.G., H.Y., C.-J.L.);College of Art and Science, Shanxi Agriculture University, Taigu, Shanxi 030801, People's Republic of China (C.G.); andBiochemistry and Cell Biology Department, Stony Brook University, Stony Brook, New York 11972 (H.Y.).
Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York 11973 (X.Z., M.G., H.Y., C.-J.L.);College of Art and Science, Shanxi Agriculture University, Taigu, Shanxi 030801, People's Republic of China (C.G.); andBiochemistry and Cell Biology Department, Stony Brook University, Stony Brook, New York 11972 (H.Y.)
Plant Physiol. 2015 Feb;167(2):337-50. doi: 10.1104/pp.114.249136. Epub 2014 Dec 12.
Phenylpropanoid biosynthesis in plants engenders myriad phenolics with diverse biological functions. Phenylalanine ammonia-lyase (PAL) is the first committed enzyme in the pathway, directing primary metabolic flux into a phenylpropanoid branch. Previously, we demonstrated that the Arabidopsis (Arabidopsis thaliana) Kelch domain-containing F-box proteins, AtKFB01, AtKFB20, and AtKFB50, function as the negative regulators controlling phenylpropanoid biosynthesis via mediating PAL's ubiquitination and subsequent degradation. Here, we reveal that Arabidopsis KFB39, a close homolog of AtKFB50, also interacts physically with PAL isozymes and modulates PAL stability and activity. Disturbing the expression of KFB39 reciprocally affects the accumulation/deposition of a set of phenylpropanoid end products, suggesting that KFB39 is an additional posttranslational regulator responsible for the turnover of PAL and negatively controlling phenylpropanoid biosynthesis. Furthermore, we discover that exposure of Arabidopsis to ultraviolet (UV)-B radiation suppresses the expression of all four KFB genes while inducing the transcription of PAL isogenes; these data suggest that Arabidopsis consolidates both transcriptional and posttranslational regulation mechanisms to maximize its responses to UV light stress. Simultaneous down-regulation of all four identified KFBs significantly enhances the production of (poly)phenols and the plant's tolerance to UV irradiation. This study offers a biotechnological approach for engineering the production of useful phenolic chemicals and for increasing a plant's resistance to environmental stress.
植物中的苯丙烷生物合成产生了具有多种生物学功能的无数酚类物质。苯丙氨酸解氨酶(PAL)是该途径中的第一个关键酶,将初级代谢流导向苯丙烷分支。此前,我们证明了拟南芥中含 Kelch 结构域的 F 盒蛋白 AtKFB01、AtKFB20 和 AtKFB50 通过介导 PAL 的泛素化及随后的降解,作为控制苯丙烷生物合成的负调控因子发挥作用。在此,我们揭示了 AtKFB50 的紧密同源物拟南芥 KFB39 也与 PAL 同工酶发生物理相互作用,并调节 PAL 的稳定性和活性。干扰 KFB39 的表达会相互影响一组苯丙烷终产物的积累/沉积,这表明 KFB39 是另一个负责 PAL 周转并负调控苯丙烷生物合成的翻译后调控因子。此外,我们发现拟南芥暴露于紫外线 B(UV-B)辐射下会抑制所有四个 KFB 基因的表达,同时诱导 PAL 同工基因的转录;这些数据表明拟南芥整合了转录和翻译后调控机制,以最大程度地响应紫外线胁迫。同时下调所有四个已鉴定的 KFB 可显著提高(多)酚的产量以及植物对紫外线辐射的耐受性。这项研究为工程化生产有用的酚类化学品以及增强植物对环境胁迫的抗性提供了一种生物技术方法。