Suppr超能文献

解析复杂的层次基因调控网络:揭示驱动次生细胞壁形成的多层次调控与修饰

Deciphering the intricate hierarchical gene regulatory network: unraveling multi-level regulation and modifications driving secondary cell wall formation.

作者信息

Wei Zhigang, Wei Hairong

机构信息

Engineering Research Center of Agricultural Microbiology Technology, Ministhry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.

College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA.

出版信息

Hortic Res. 2023 Dec 19;11(2):uhad281. doi: 10.1093/hr/uhad281. eCollection 2024 Feb.

Abstract

Wood quality is predominantly determined by the amount and the composition of secondary cell walls (SCWs). Consequently, unraveling the molecular regulatory mechanisms governing SCW formation is of paramount importance for genetic engineering aimed at enhancing wood properties. Although SCW formation is known to be governed by a hierarchical gene regulatory network (HGRN), our understanding of how a HGRN operates and regulates the formation of heterogeneous SCWs for plant development and adaption to ever-changing environment remains limited. In this review, we examined the HGRNs governing SCW formation and highlighted the significant key differences between herbaceous Arabidopsis and woody plant poplar. We clarified many confusions in existing literatures regarding the HGRNs and their orthologous gene names and functions. Additionally, we revealed many network motifs including feed-forward loops, feed-back loops, and negative and positive autoregulation in the HGRNs. We also conducted a thorough review of post-transcriptional and post-translational aspects, protein-protein interactions, and epigenetic modifications of the HGRNs. Furthermore, we summarized how the HGRNs respond to environmental factors and cues, influencing SCW biosynthesis through regulatory cascades, including many regulatory chains, wiring regulations, and network motifs. Finally, we highlighted the future research directions for gaining a further understanding of molecular regulatory mechanisms underlying SCW formation.

摘要

木材质量主要由次生细胞壁(SCWs)的数量和组成决定。因此,阐明控制SCW形成的分子调控机制对于旨在改善木材特性的基因工程至关重要。尽管已知SCW形成受层次基因调控网络(HGRN)控制,但我们对HGRN如何运作以及如何调节异质SCW的形成以实现植物发育和适应不断变化的环境的理解仍然有限。在本综述中,我们研究了控制SCW形成的HGRN,并强调了草本植物拟南芥和木本植物杨树之间的显著关键差异。我们澄清了现有文献中关于HGRN及其直系同源基因名称和功能的许多混淆之处。此外,我们揭示了HGRN中的许多网络基序,包括前馈环、反馈环以及正负自调节。我们还对HGRN的转录后和翻译后方面、蛋白质-蛋白质相互作用以及表观遗传修饰进行了全面综述。此外,我们总结了HGRN如何响应环境因素和信号,通过调控级联影响SCW生物合成,包括许多调控链、布线规则和网络基序。最后,我们强调了未来的研究方向,以进一步了解SCW形成背后的分子调控机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b09/10857936/86e44fd31159/uhad281f1.jpg

相似文献

3
Hormonal regulation of secondary cell wall formation.
J Exp Bot. 2015 Aug;66(16):5015-27. doi: 10.1093/jxb/erv222. Epub 2015 May 22.
6
, the R2R3 MYB transcription factor involved in secondary cell wall biosynthesis in poplar.
Front Plant Sci. 2024 Jan 17;14:1341245. doi: 10.3389/fpls.2023.1341245. eCollection 2023.
7
NAC-MYB-based transcriptional regulation of secondary cell wall biosynthesis in land plants.
Front Plant Sci. 2015 May 5;6:288. doi: 10.3389/fpls.2015.00288. eCollection 2015.
9
Recent Advances in the Transcriptional Regulation of Secondary Cell Wall Biosynthesis in the Woody Plants.
Front Plant Sci. 2018 Oct 23;9:1535. doi: 10.3389/fpls.2018.01535. eCollection 2018.
10
Promotes Wood Formation and Bioactive Gibberellins Biosynthesis in .
Front Plant Sci. 2022 Jun 28;13:835035. doi: 10.3389/fpls.2022.835035. eCollection 2022.

本文引用的文献

2
A longer wood growing season does not lead to higher carbon sequestration.
Sci Rep. 2023 Mar 11;13(1):4059. doi: 10.1038/s41598-023-31336-x.
3
PagERF81 regulates lignin biosynthesis and xylem cell differentiation in poplar.
J Integr Plant Biol. 2023 May;65(5):1134-1146. doi: 10.1111/jipb.13453. Epub 2023 Mar 15.
5
Climate-responsive DNA methylation is involved in the biosynthesis of lignin in birch.
Front Plant Sci. 2022 Dec 2;13:1090967. doi: 10.3389/fpls.2022.1090967. eCollection 2022.
6
The roles of HD-ZIP proteins in plant abiotic stress tolerance.
Front Plant Sci. 2022 Oct 12;13:1027071. doi: 10.3389/fpls.2022.1027071. eCollection 2022.
7
The Regulation of Xylem Development by Transcription Factors and Their Upstream MicroRNAs.
Int J Mol Sci. 2022 Sep 4;23(17):10134. doi: 10.3390/ijms231710134.
9
Biomass formation and sugar release efficiency of modified by altered expression of a NAC transcription factor.
Plant Direct. 2022 Aug 12;6(8):e419. doi: 10.1002/pld3.419. eCollection 2022 Aug.
10
A Phytochrome B-PIF4-MYC2/MYC4 module inhibits secondary cell wall thickening in response to shaded light.
Plant Commun. 2022 Nov 14;3(6):100416. doi: 10.1016/j.xplc.2022.100416. Epub 2022 Aug 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验