Suppr超能文献

Cep68的降解和PCNT的切割介导Cep215从中心体基质中去除,以实现中心粒分离、脱离和许可。

Degradation of Cep68 and PCNT cleavage mediate Cep215 removal from the PCM to allow centriole separation, disengagement and licensing.

作者信息

Pagan Julia K, Marzio Antonio, Jones Mathew J K, Saraf Anita, Jallepalli Prasad V, Florens Laurence, Washburn Michael P, Pagano Michele

机构信息

Department of Pathology, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York 10065, USA.

Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue New York 10065, USA.

出版信息

Nat Cell Biol. 2015 Jan;17(1):31-43. doi: 10.1038/ncb3076. Epub 2014 Dec 15.

Abstract

An intercentrosomal linker keeps a cell's two centrosomes joined together until it is dissolved at the onset of mitosis. A second connection keeps daughter centrioles engaged to their mothers until they lose their orthogonal arrangement at the end of mitosis. Centriole disengagement is required to license centrioles for duplication. We show that the intercentrosomal linker protein Cep68 is degraded in prometaphase through the SCF(βTrCP) (Skp1-Cul1-F-box protein) ubiquitin ligase complex. Cep68 degradation is initiated by PLK1 phosphorylation of Cep68 on Ser 332, allowing recognition by βTrCP. We also found that Cep68 forms a complex with Cep215 (also known as Cdk5Rap2) and PCNT (also known as pericentrin), two PCM (pericentriolar material) proteins involved in centriole engagement. Cep68 and PCNT bind to different pools of Cep215. We propose that Cep68 degradation allows Cep215 removal from the peripheral PCM preventing centriole separation following disengagement, whereas PCNT cleavage mediates Cep215 removal from the core of the PCM to inhibit centriole disengagement and duplication.

摘要

中心体间连接蛋白使细胞的两个中心体保持连接在一起,直到在有丝分裂开始时被溶解。另一种连接使子代中心粒与其母代中心粒保持连接,直到它们在有丝分裂末期失去正交排列。中心粒脱离是中心粒进行复制所必需的。我们发现,中心体间连接蛋白Cep68在有丝分裂前期通过SCF(βTrCP)(Skp1-Cul1-F盒蛋白)泛素连接酶复合物被降解。Cep68的降解由PLK1在Ser 332位点对Cep68的磷酸化引发,从而使其能被βTrCP识别。我们还发现,Cep68与Cep215(也称为Cdk5Rap2)和PCNT(也称为中心体周围蛋白)形成复合物,这两种中心粒周围物质(PCM)蛋白参与中心粒连接。Cep68和PCNT与不同的Cep215池结合。我们提出,Cep68的降解使Cep215从外周PCM中去除,从而防止脱离后的中心粒分离,而PCNT的切割介导Cep215从PCM核心中去除,以抑制中心粒脱离和复制。

相似文献

2
Solving the centriole disengagement puzzle.
Nat Cell Biol. 2015 Jan;17(1):3-5. doi: 10.1038/ncb3087.
4
Cep68 and Cep215 (Cdk5rap2) are required for centrosome cohesion.
J Cell Sci. 2007 Dec 15;120(Pt 24):4321-31. doi: 10.1242/jcs.020248. Epub 2007 Nov 27.
6
PCNT is critical for the association and conversion of centrioles to centrosomes during mitosis.
J Cell Sci. 2019 Mar 26;132(6):jcs225789. doi: 10.1242/jcs.225789.
7
Vesicular trafficking plays a role in centriole disengagement and duplication.
Mol Biol Cell. 2018 Nov 1;29(22):2622-2631. doi: 10.1091/mbc.E18-04-0241. Epub 2018 Sep 6.
8
Cep68 can be regulated by Nek2 and SCF complex.
Eur J Cell Biol. 2015 Mar-Apr;94(3-4):162-72. doi: 10.1016/j.ejcb.2015.01.004. Epub 2015 Feb 4.
10
The Cep57-pericentrin module organizes PCM expansion and centriole engagement.
Nat Commun. 2019 Feb 25;10(1):931. doi: 10.1038/s41467-019-08862-2.

引用本文的文献

1
Crosstalk between the circadian clock, intestinal stem cell niche, and epithelial cell fate decision.
Genes Dis. 2025 Apr 18;12(6):101650. doi: 10.1016/j.gendis.2025.101650. eCollection 2025 Nov.
2
14-3-3ε inhibits premature centriole disengagement by inhibiting the activity of Plk1 and separase.
J Cell Sci. 2025 Jul 15;138(14). doi: 10.1242/jcs.263808. Epub 2025 Jul 18.
3
Multimodal mechanisms of human centriole engagement and disengagement.
EMBO J. 2025 Mar;44(5):1294-1321. doi: 10.1038/s44318-024-00350-8. Epub 2025 Feb 4.
4
SKP1-CUL1-F-box: Key molecular targets affecting disease progression.
FASEB J. 2025 Jan 31;39(2):e70326. doi: 10.1096/fj.202402816RR.
5
PPTC7 antagonizes mitophagy by promoting BNIP3 and NIX degradation via SCF.
EMBO Rep. 2024 Aug;25(8):3324-3347. doi: 10.1038/s44319-024-00181-y. Epub 2024 Jul 11.
8
FBXL4 suppresses mitophagy by restricting the accumulation of NIX and BNIP3 mitophagy receptors.
EMBO J. 2023 Jul 3;42(13):e112767. doi: 10.15252/embj.2022112767. Epub 2023 May 10.
9
Duplication and Segregation of Centrosomes during Cell Division.
Cells. 2022 Aug 7;11(15):2445. doi: 10.3390/cells11152445.
10
Pathogenic LRRK2 regulates centrosome cohesion via Rab10/RILPL1-mediated CDK5RAP2 displacement.
iScience. 2022 May 30;25(6):104476. doi: 10.1016/j.isci.2022.104476. eCollection 2022 Jun 17.

本文引用的文献

1
The centrosome-specific phosphorylation of Cnn by Polo/Plk1 drives Cnn scaffold assembly and centrosome maturation.
Dev Cell. 2014 Mar 31;28(6):659-69. doi: 10.1016/j.devcel.2014.02.013. Epub 2014 Mar 20.
2
Centlein mediates an interaction between C-Nap1 and Cep68 to maintain centrosome cohesion.
J Cell Sci. 2014 Apr 15;127(Pt 8):1631-9. doi: 10.1242/jcs.139451. Epub 2014 Feb 19.
3
Importance of the CEP215-pericentrin interaction for centrosome maturation during mitosis.
PLoS One. 2014 Jan 22;9(1):e87016. doi: 10.1371/journal.pone.0087016. eCollection 2014.
4
Amorphous no more: subdiffraction view of the pericentriolar material architecture.
Trends Cell Biol. 2014 Mar;24(3):188-97. doi: 10.1016/j.tcb.2013.10.001. Epub 2013 Nov 19.
5
Building and remodelling Cullin-RING E3 ubiquitin ligases.
EMBO Rep. 2013 Dec;14(12):1050-61. doi: 10.1038/embor.2013.173. Epub 2013 Nov 15.
6
An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database.
J Am Soc Mass Spectrom. 1994 Nov;5(11):976-89. doi: 10.1016/1044-0305(94)80016-2.
7
LRRC45 is a centrosome linker component required for centrosome cohesion.
Cell Rep. 2013 Sep 26;4(6):1100-7. doi: 10.1016/j.celrep.2013.08.005. Epub 2013 Sep 12.
8
Cohesin cleavage is insufficient for centriole disengagement in Drosophila.
Curr Biol. 2013 Jul 22;23(14):R601-3. doi: 10.1016/j.cub.2013.04.003.
9
Multiple mechanisms contribute to centriole separation in C. elegans.
Curr Biol. 2013 Jul 22;23(14):1380-7. doi: 10.1016/j.cub.2013.06.043.
10
Mechanisms and function of substrate recruitment by F-box proteins.
Nat Rev Mol Cell Biol. 2013 Jun;14(6):369-81. doi: 10.1038/nrm3582. Epub 2013 May 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验