Department of Biochemistry and Biophysics, HHMI and University of California, San Francisco, San Francisco, CA, USA.
Department of Biochemistry and Biophysics, HHMI and University of California, San Francisco, San Francisco, CA, USA.
Trends Cell Biol. 2014 Mar;24(3):188-97. doi: 10.1016/j.tcb.2013.10.001. Epub 2013 Nov 19.
The centrosome influences the shape, orientation and activity of the microtubule cytoskeleton. The pericentriolar material (PCM), determines this functionality by providing a dynamic platform for nucleating microtubules and acts as a nexus for molecular signaling. Although great strides have been made in understanding PCM activity, its diffraction-limited size and amorphous appearance on electron microscopy (EM) have limited analysis of its high-order organization. Here, we outline current knowledge of PCM architecture and assembly, emphasizing recent super-resolution imaging studies that revealed the PCM has a layered structure made of fibers and matrices conserved from flies to humans. Notably, these studies debunk the long-standing view of an amorphous PCM and provide a paradigm to dissect the supramolecular organization of organelles in cells.
中心体影响微管细胞骨架的形状、方向和活性。 中心粒周围物质(PCM)通过为微管成核提供动态平台,并作为分子信号的连接点,决定了这种功能。 尽管在理解 PCM 活性方面已经取得了很大进展,但其在电子显微镜(EM)上的衍射限制大小和无定形外观限制了对其高级组织的分析。 在这里,我们概述了 PCM 结构和组装的现有知识,强调了最近的超分辨率成像研究,这些研究揭示了 PCM 具有由纤维和基质组成的层状结构,从苍蝇到人类都是保守的。 值得注意的是,这些研究推翻了长期以来对无定形 PCM 的看法,并为剖析细胞中细胞器的超分子组织提供了范例。