Pouplana R, Campanera J M
Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII, s/n, Diagonal Sud, 08028, Barcelona, Catalonia, Spain.
Phys Chem Chem Phys. 2015 Jan 28;17(4):2823-37. doi: 10.1039/c4cp04544k. Epub 2014 Dec 15.
Low-weight amyloid-β (Aβ) oligomers formed at early stages of oligomerization rather than fibril assemblies seem to be the toxic components that drive neurodegeneration in Alzheimer's disease. Unfortunately, detailed knowledge of the structure of these early oligomers at the residue level is not yet available. In this study, we performed all-atom explicit solvent molecular dynamics simulations to examine the oligomerization process of Aβ10-35 monomers when forming dimers, trimers, tetramers and octamers, with four independent simulations of a total simulated time of 3 μs for each oligomer system. The decomposition of the stability free energy by MM-GBSA methodology allowed us to unravel the network of energetic interactions that stabilize such oligomers. The contribution of the intermonomeric van der Waals term is the most significant energy feature of the oligomerization process, consistent with the so-called hydrophobic effect. Furthermore, the decomposition of the stability free energy into residues and residue-pairwise terms revealed that it is mainly apolar interactions between the three specific hydrophobic fragments 31-35 (C-terminal region), 17-20 (central hydrophobic core) and 12-14 (N-terminal region) that are responsible for such a favourable effect. The conformation in which the hydrophobic cthr-chc interaction is oriented perpendicularly is particularly important. We propose three other model substructures that favour the oligomerization process and can thus be considered as molecular targets for future inhibitors. Understanding Aβ oligomerization at the residue level could lead to more efficient design of inhibitors of this process.
在阿尔茨海默病中,低重量的淀粉样β蛋白(Aβ)寡聚体在寡聚化早期形成,而非纤维聚集体,似乎是驱动神经退行性变的有毒成分。不幸的是,目前尚未获得这些早期寡聚体在残基水平上的详细结构信息。在本研究中,我们进行了全原子显式溶剂分子动力学模拟,以研究Aβ10 - 35单体形成二聚体、三聚体、四聚体和八聚体的寡聚化过程,每个寡聚体系统进行了四次独立模拟,总模拟时间为3 μs。通过MM - GBSA方法对稳定性自由能进行分解,使我们能够揭示稳定此类寡聚体的能量相互作用网络。单体间范德华项的贡献是寡聚化过程中最显著的能量特征,这与所谓的疏水效应一致。此外,将稳定性自由能分解为残基和残基对项表明,主要是三个特定疏水片段31 - 35(C末端区域)、17 - 20(中央疏水核心)和12 - 14(N末端区域)之间的非极性相互作用产生了这种有利影响。疏水cthr - chc相互作用垂直取向的构象尤为重要。我们提出了另外三种有利于寡聚化过程的模型亚结构,因此可被视为未来抑制剂的分子靶点。在残基水平上理解Aβ寡聚化可能会导致对该过程抑制剂的更有效设计。