Suppr超能文献

N-甲基-D-天冬氨酸受体从内质网到突触的转运

ER to synapse trafficking of NMDA receptors.

作者信息

Horak Martin, Petralia Ronald S, Kaniakova Martina, Sans Nathalie

机构信息

Institute of Physiology, Academy of Sciences of the Czech Republic v.v.i. Prague, Czech Republic.

Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health Bethesda, MD, USA.

出版信息

Front Cell Neurosci. 2014 Nov 27;8:394. doi: 10.3389/fncel.2014.00394. eCollection 2014.

Abstract

Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. There are three distinct subtypes of ionotropic glutamate receptors (GluRs) that have been identified including 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid receptors (AMPARs), N-methyl-D-aspartate receptors (NMDARs) and kainate receptors. The most common GluRs in mature synapses are AMPARs that mediate the fast excitatory neurotransmission and NMDARs that mediate the slow excitatory neurotransmission. There have been large numbers of recent reports studying how a single neuron regulates synaptic numbers and types of AMPARs and NMDARs. Our current research is centered primarily on NMDARs and, therefore, we will focus in this review on recent knowledge of molecular mechanisms occurring (1) early in the biosynthetic pathway of NMDARs, (2) in the transport of NMDARs after their release from the endoplasmic reticulum (ER); and (3) at the plasma membrane including excitatory synapses. Because a growing body of evidence also indicates that abnormalities in NMDAR functioning are associated with a number of human psychiatric and neurological diseases, this review together with other chapters in this issue may help to enhance research and to gain further knowledge of normal synaptic physiology as well as of the etiology of many human brain diseases.

摘要

谷氨酸是哺乳动物中枢神经系统中的主要兴奋性神经递质。已鉴定出离子型谷氨酸受体(GluRs)有三种不同的亚型,包括2-氨基-3-(5-甲基-3-氧代-1,2-恶唑-4-基)丙酸受体(AMPARs)、N-甲基-D-天冬氨酸受体(NMDARs)和海人藻酸受体。成熟突触中最常见的GluRs是介导快速兴奋性神经传递的AMPARs和介导缓慢兴奋性神经传递的NMDARs。最近有大量报道研究单个神经元如何调节AMPARs和NMDARs的突触数量和类型。我们目前的研究主要集中在NMDARs上,因此,在本综述中,我们将聚焦于以下方面的最新知识:(1)NMDARs生物合成途径早期发生的分子机制;(2)NMDARs从内质网(ER)释放后的转运过程;(3)包括兴奋性突触在内的质膜上的相关机制。由于越来越多的证据还表明NMDAR功能异常与许多人类精神和神经疾病有关,本综述以及本期的其他章节可能有助于加强研究,并进一步了解正常突触生理学以及许多人类脑部疾病的病因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54bc/4245912/0045acbd65cc/fncel-08-00394-g0001.jpg

相似文献

1
ER to synapse trafficking of NMDA receptors.
Front Cell Neurosci. 2014 Nov 27;8:394. doi: 10.3389/fncel.2014.00394. eCollection 2014.
2
Colocalization of distinct NMDA receptor subtypes at excitatory synapses in the entorhinal cortex.
J Neurophysiol. 2019 Jan 1;121(1):238-254. doi: 10.1152/jn.00468.2018. Epub 2018 Nov 21.
4
The Extracellular Domains of GluN Subunits Play an Essential Role in Processing NMDA Receptors in the ER.
Front Neurosci. 2021 Mar 16;15:603715. doi: 10.3389/fnins.2021.603715. eCollection 2021.
9
Making of a Synapse: Recurrent Roles of Drebrin A at Excitatory Synapses Throughout Life.
Adv Exp Med Biol. 2017;1006:119-139. doi: 10.1007/978-4-431-56550-5_8.
10
Protein quality control of -methyl-D-aspartate receptors.
Front Cell Neurosci. 2022 Jul 22;16:907560. doi: 10.3389/fncel.2022.907560. eCollection 2022.

引用本文的文献

2
Regulation of Synaptic NMDA Receptor Activity by Post-Translational Modifications.
Neurochem Res. 2025 Mar 3;50(2):110. doi: 10.1007/s11064-025-04346-6.
3
Characterization of Mice Carrying a Neurodevelopmental Disease-Associated GluN2B(L825V) Variant.
J Neurosci. 2024 Jul 31;44(31):e2291232024. doi: 10.1523/JNEUROSCI.2291-23.2024.
4
Myosin Va-dependent Transport of NMDA Receptors in Hippocampal Neurons.
Neurosci Bull. 2024 Aug;40(8):1053-1075. doi: 10.1007/s12264-023-01174-y. Epub 2024 Jan 30.
6
Subunit-Dependent Surface Mobility and Localization of NMDA Receptors in Hippocampal Neurons Measured Using Nanobody Probes.
J Neurosci. 2023 Jun 28;43(26):4755-4774. doi: 10.1523/JNEUROSCI.2014-22.2023. Epub 2023 Jun 7.
7
-related neurodevelopmental disorder: current understanding of pathophysiological mechanisms.
Front Synaptic Neurosci. 2023 Jan 10;14:1090865. doi: 10.3389/fnsyn.2022.1090865. eCollection 2022.
8
Tacrine Derivatives in Neurological Disorders: Focus on Molecular Mechanisms and Neurotherapeutic Potential.
Oxid Med Cell Longev. 2022 Aug 18;2022:7252882. doi: 10.1155/2022/7252882. eCollection 2022.
9
Protein quality control of -methyl-D-aspartate receptors.
Front Cell Neurosci. 2022 Jul 22;16:907560. doi: 10.3389/fncel.2022.907560. eCollection 2022.

本文引用的文献

1
Scribble1/AP2 complex coordinates NMDA receptor endocytic recycling.
Cell Rep. 2014 Oct 23;9(2):712-27. doi: 10.1016/j.celrep.2014.09.017. Epub 2014 Oct 9.
3
A unique PDZ domain and arrestin-like fold interaction reveals mechanistic details of endocytic recycling by SNX27-retromer.
Proc Natl Acad Sci U S A. 2014 Sep 2;111(35):E3604-13. doi: 10.1073/pnas.1410552111. Epub 2014 Aug 18.
4
NMDA receptor structures reveal subunit arrangement and pore architecture.
Nature. 2014 Jul 10;511(7508):191-7. doi: 10.1038/nature13548. Epub 2014 Jun 22.
6
Synaptic control of secretory trafficking in dendrites.
Cell Rep. 2014 Jun 26;7(6):1771-8. doi: 10.1016/j.celrep.2014.05.028. Epub 2014 Jun 12.
7
Crystal structure of a heterotetrameric NMDA receptor ion channel.
Science. 2014 May 30;344(6187):992-7. doi: 10.1126/science.1251915.
8
Extrasynaptic NMDA receptor involvement in central nervous system disorders.
Neuron. 2014 Apr 16;82(2):279-93. doi: 10.1016/j.neuron.2014.03.030.
9
Retromer mediates a discrete route of local membrane delivery to dendrites.
Neuron. 2014 Apr 2;82(1):55-62. doi: 10.1016/j.neuron.2014.02.018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验