Suppr超能文献

揭示AMPA受体转运机制的方法

Methods for Uncovering the Mechanisms of AMPA Receptor Trafficking

作者信息

Restituito Sophie, Ziff Edward B.

Abstract

Information storage in the brain involves alterations in the strength of communication between neurons. This requires activity-dependent, long-lasting changes in synaptic transmission. Long-term potentiation (LTP) is a long lasting use-dependent increase in the efficiency of excitatory synaptic transmission that has been suggested to underlie certain forms of learning and memory [1]. The induction of LTP requires Ca entry through the N-methyl-D-aspartate receptor (NMDAR). However, the region within the synapse whose regulation results in LTP is still controversial. Some groups suggest a pre-synaptic modification that results in an increase in the amount of glutamate released, whereas others suggest a post-synaptic modification, such as an increase in the number of receptors or a change in receptor properties [2]. Interestingly, the description of the silent synapse, synapses that contain NMDAR only but could acquire α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) as a result of synaptic activity, support a post-synaptic mechanism [3–5]. Glutamate receptors mediate most excitatory synaptic transmission in the brain. The ionotropic glutamate receptors are clustered with associated downstream signalling molecules that are found in the post-synaptic density (PSD), and the synaptic clustering of these receptors is critical for rapid and efficient synaptic transmission. This complex of receptors with signalling molecules can also undergo dynamic changes. In particular, changing the number of glutamate receptors at the synaptic membrane could constitute a critical mechanism for rapidly altering synaptic strength. Two major classes of ionotropic glutamate receptors exist, the NMDAR and the AMPAR. A third class, the kainate receptors, will not be discussed here as it has been reviewed elsewhere [6]. Both NMDAR and AMPAR are highly concentrated at excitatory synapses linked to the PSD but they interact with different sets of scaffolding proteins. In addition, whereas NMDAR are very stably localized at the PSD, AMPAR cycle rapidly to and from the synaptic membrane. This difference in trafficking behavior of NMDAR versus AMPAR may reflect their use of different mechanisms for anchoring to the PSD. The conversion of a silent synapse to a synapse with AMPAR, a change that creates a functional synapse, has been proposed as one of the main mechanisms for LTP induction. For these reasons, studies of the trafficking of AMPAR and their cycling in and out of the synapse have provided a large step in understanding LTP. Synaptic organization, assembly and trafficking have been studied extensively for other receptors, such as the acetylcholine receptor at the neuromuscular junction [7]. AMPAR trafficking has been one of the most extensively studied properties of the excitatory synapse because of its implication in synaptic plasticity. The complexity of the organization of the brain makes assaying receptor properties without disrupting the system difficult. A complete picture of synaptic regulation comes from combining a wide range of methodological approaches, such as electrophysiology, cell biology, biochemistry and genetics. The development of new methods or the adaptation of methods used in other systems has allowed a better understanding of the trafficking of AMPAR. Mechanisms of AMPAR trafficking have been reviewed elsewhere [3,8,9], and this chapter will present an overview of the different approaches that have been used to study the trafficking of AMPAR and its implication for synaptic plasticity, focusing on the contribution and the importance of each method.

摘要

大脑中的信息存储涉及神经元之间通信强度的改变。这需要依赖活动的、持久的突触传递变化。长时程增强(LTP)是一种持久的、依赖使用的兴奋性突触传递效率增加,被认为是某些形式的学习和记忆的基础[1]。LTP的诱导需要通过N-甲基-D-天冬氨酸受体(NMDAR)进入钙离子。然而,突触内导致LTP的调节区域仍存在争议。一些研究小组认为是突触前修饰导致谷氨酸释放量增加,而另一些人则认为是突触后修饰,如受体数量增加或受体特性改变[2]。有趣的是,沉默突触(仅含有NMDAR但可因突触活动而获得α-氨基-3-羟基-5-甲基-4-异恶唑丙酸受体(AMPAR)的突触)的描述支持突触后机制[3-5]。谷氨酸受体介导大脑中大多数兴奋性突触传递。离子型谷氨酸受体与位于突触后致密区(PSD)的相关下游信号分子聚集在一起,这些受体的突触聚集对于快速高效的突触传递至关重要。这种受体与信号分子的复合物也可以发生动态变化。特别是,改变突触膜上谷氨酸受体的数量可能是快速改变突触强度的关键机制。存在两大类离子型谷氨酸受体,即NMDAR和AMPAR。第三类,即海人藻酸受体,这里将不做讨论,因为它在其他地方已有综述[6]。NMDAR和AMPAR都高度集中在与PSD相连的兴奋性突触处,但它们与不同的支架蛋白相互作用。此外,虽然NMDAR非常稳定地定位在PSD,但AMPAR在突触膜上快速循环进出。NMDAR与AMPAR在运输行为上的这种差异可能反映了它们使用不同的机制锚定到PSD。将沉默突触转变为具有AMPAR的突触,这种产生功能性突触的变化,被认为是LTP诱导的主要机制之一。出于这些原因,对AMPAR运输及其在突触内外循环的研究为理解LTP迈出了重要一步。突触组织、组装和运输已经针对其他受体进行了广泛研究,如神经肌肉接头处的乙酰胆碱受体[7]。由于其与突触可塑性的关联,AMPAR运输一直是兴奋性突触最广泛研究的特性之一。大脑组织的复杂性使得在不破坏系统的情况下测定受体特性变得困难。突触调节的完整图景来自于结合多种方法,如电生理学、细胞生物学、生物化学和遗传学。新方法的开发或其他系统中使用方法的改编使得对AMPAR运输有了更好的理解。AMPAR运输机制在其他地方已有综述[3,8,9],本章将概述用于研究AMPAR运输及其对突触可塑性影响的不同方法,重点关注每种方法的贡献和重要性。

相似文献

5
Long-term potentiation in isolated dendritic spines.孤立树突棘中的长时程增强效应。
PLoS One. 2009 Jun 23;4(6):e6021. doi: 10.1371/journal.pone.0006021.
8
Mechanisms of AMPA Receptor Endosomal Sorting.AMPA 受体内体分选机制。
Front Mol Neurosci. 2018 Dec 5;11:440. doi: 10.3389/fnmol.2018.00440. eCollection 2018.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验