Suppr超能文献

微生物计数分布对人体健康风险评估的影响。

Impact of microbial count distributions on human health risk estimates.

机构信息

Technical University of Denmark - National Food institute, Mørkhøj Bygade, 19, Building H, DK-2860 Søborg, Denmark.

出版信息

Int J Food Microbiol. 2015 Feb 16;195:48-57. doi: 10.1016/j.ijfoodmicro.2014.11.024. Epub 2014 Dec 2.

Abstract

Quantitative microbiological risk assessment (QMRA) is influenced by the choice of the probability distribution used to describe pathogen concentrations, as this may eventually have a large effect on the distribution of doses at exposure. When fitting a probability distribution to microbial enumeration data, several factors may have an impact on the accuracy of that fit. Analysis of the best statistical fits of different distributions alone does not provide a clear indication of the impact in terms of risk estimates. Thus, in this study we focus on the impact of fitting microbial distributions on risk estimates, at two different concentration scenarios and at a range of prevalence levels. By using five different parametric distributions, we investigate whether different characteristics of a good fit are crucial for an accurate risk estimate. Among the factors studied are the importance of accounting for the Poisson randomness in counts, the difference between treating "true" zeroes as such or as censored below a limit of quantification (LOQ) and the importance of making the correct assumption about the underlying distribution of concentrations. By running a simulation experiment with zero-inflated Poisson-lognormal distributed data and an existing QMRA model from retail to consumer level, it was possible to assess the difference between expected risk and the risk estimated with using a lognormal, a zero-inflated lognormal, a Poisson-gamma, a zero-inflated Poisson-gamma and a zero-inflated Poisson-lognormal distribution. We show that the impact of the choice of different probability distributions to describe concentrations at retail on risk estimates is dependent both on concentration and prevalence levels. We also show that the use of an LOQ should be done consciously, especially when zero-inflation is not used. In general, zero-inflation does not necessarily improve the absolute risk estimation, but performance of zero-inflated distributions in QMRA tends to be more robust to changes in prevalence and concentration levels, and to the use of an LOQ to interpret zero values, compared to that of their non-zero-inflated counterparts.

摘要

定量微生物风险评估(QMRA)受到用于描述病原体浓度的概率分布选择的影响,因为这最终可能对暴露时剂量的分布产生很大影响。在将概率分布拟合到微生物计数数据时,有几个因素可能会影响拟合的准确性。仅分析不同分布的最佳统计拟合并不能清楚地表明在风险估计方面的影响。因此,在本研究中,我们专注于在两种不同浓度情况下和一系列流行率水平下,拟合微生物分布对风险估计的影响。通过使用五种不同的参数分布,我们研究了良好拟合的不同特征对于准确风险估计是否至关重要。在所研究的因素中,重要的是要考虑到计数中的泊松随机性,将“真实”零值视为零还是视为低于定量下限(LOQ)的截断值,以及对浓度的基础分布做出正确假设的重要性。通过对具有零膨胀泊松对数正态分布数据和现有的从零售到消费者水平的 QMRA 模型进行模拟实验,评估了使用对数正态、零膨胀对数正态、泊松伽马、零膨胀泊松伽马和零膨胀泊松对数正态分布描述零售浓度时,预期风险与使用风险估计之间的差异。我们表明,选择不同的概率分布来描述零售浓度对风险估计的影响取决于浓度和流行率水平。我们还表明,应有意识地使用 LOQ,特别是在不使用零膨胀时。一般来说,零膨胀不一定会提高绝对风险估计,但与非零膨胀分布相比,零膨胀分布在 QMRA 中的性能在流行率和浓度水平变化以及使用 LOQ 来解释零值时更具鲁棒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验