Suppr超能文献

拟合微生物计数分布:理解零值。

Fitting a distribution to microbial counts: making sense of zeroes.

机构信息

Technical University of Denmark, National Food Institute, Mørkhøj Bygade, 19, Building H, DK-2860 Søborg, Denmark.

Technical University of Denmark, Informatics and Mathematical Modelling, Matematiktorvet, Building 303B, DK-2800 Kgs. Lyngby, Denmark.

出版信息

Int J Food Microbiol. 2015 Mar 2;196:40-50. doi: 10.1016/j.ijfoodmicro.2014.11.023. Epub 2014 Dec 3.

Abstract

The accurate estimation of true prevalence and concentration of microorganisms in foods is an important element of quantitative microbiological risk assessment (QMRA). This estimation is often based on microbial detection and enumeration data. Among such data are artificial zero counts, that originated by chance from contaminated food products. When these products are not differentiated from uncontaminated products that originate true zero counts, the estimates of true prevalence and concentration may be inaccurate. This inaccuracy is especially relevant in situations where highly pathogenic bacteria are involved and where growth can occur along the food pathway. Our aim was to develop a method that provides accurate estimates of concentration parameters and differentiates between artificial and true zeroes, thus also accurately estimating true prevalence. We first show the disadvantages of using a limit of quantification (LOQ) threshold for the analysis of microbial enumeration data. We show that, depending on the original distribution of concentrations and the LOQ value, it may be incorrect to treat artificial zeroes as censored below a quantification threshold. Next, a method is developed that estimates the true prevalence of contamination within a food lot and the parameters characterizing the within-lot distribution of concentrations, without assuming a LOQ, and using raw plate count data as an input. Counts resulting both from contaminated and uncontaminated sample units are analysed together. This procedure allows the estimation of the proportion of artificial zeroes among the total of zero counts, and therefore the estimation of true prevalence from enumeration results. We observe that this method yields best estimates of mean, standard deviation and prevalence at low true prevalence levels and low expected standard deviation. Furthermore, we conclude that the estimation of prevalence and the estimation of the distribution of concentrations are interrelated and therefore should be estimated simultaneously. We also conclude that one of the keys to an accurate characterization of the overall microbial contamination is the correct identification and separation of true and artificial zeroes. Our method for the analysis of quantitative microbial data shows a good performance in the estimation of true prevalence and the parameters of the distribution of concentrations, which indicates that it is a useful data analysis tool in the field of QMRA.

摘要

准确估计食品中微生物的真实流行率和浓度是定量微生物风险评估(QMRA)的重要要素。这种估计通常基于微生物检测和计数数据。在这些数据中,存在人工零值计数,这些零值计数是由受污染的食品偶然产生的。当这些产品与来自真实零值计数的未受污染产品未区分开来时,真实流行率和浓度的估计可能会不准确。这种不准确性在涉及高致病性细菌且在食品路径中可能发生生长的情况下尤为重要。我们的目的是开发一种方法,该方法能够提供浓度参数的准确估计值,并区分人工零值和真实零值,从而也能够准确估计真实流行率。我们首先展示了在分析微生物计数数据时使用定量限(LOQ)阈值的缺点。我们表明,根据浓度的原始分布和 LOQ 值,将人工零值视为低于定量阈值而被删失可能是不正确的。接下来,开发了一种方法,该方法无需假设 LOQ 即可估计食品批次内的真实污染流行率以及描述浓度批次内分布的参数,并使用原始平板计数数据作为输入。对来自污染和未污染的样品单元的计数一起进行分析。该程序允许估计总零值计数中人工零值的比例,从而从计数结果中估计真实流行率。我们观察到,在低真实流行率水平和低预期标准差下,该方法可以对均值、标准差和流行率进行最佳估计。此外,我们得出的结论是,流行率的估计和浓度分布的估计是相互关联的,因此应该同时进行估计。我们还得出结论,正确识别和分离真实和人工零值是准确描述整体微生物污染的关键之一。我们用于分析定量微生物数据的方法在真实流行率和浓度分布参数的估计中表现出良好的性能,这表明它是 QMRA 领域中有用的数据分析工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验