Kruse Thomas, van de Pas Bram A, Atteia Ariane, Krab Klaas, Hagen Wilfred R, Goodwin Lynne, Chain Patrick, Boeren Sjef, Maphosa Farai, Schraa Gosse, de Vos Willem M, van der Oost John, Smidt Hauke, Stams Alfons J M
Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands.
Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands Unité de Bioénergétique et Ingénierie des Protéines-UMR 7281, CNRS-Aix-Marseille Univ, Marseille, France.
J Bacteriol. 2015 Mar;197(5):893-904. doi: 10.1128/JB.02370-14. Epub 2014 Dec 15.
Desulfitobacterium dehalogenans is able to grow by organohalide respiration using 3-chloro-4-hydroxyphenyl acetate (Cl-OHPA) as an electron acceptor. We used a combination of genome sequencing, biochemical analysis of redox active components, and shotgun proteomics to study elements of the organohalide respiratory electron transport chain. The genome of Desulfitobacterium dehalogenans JW/IU-DC1(T) consists of a single circular chromosome of 4,321,753 bp with a GC content of 44.97%. The genome contains 4,252 genes, including six rRNA operons and six predicted reductive dehalogenases. One of the reductive dehalogenases, CprA, is encoded by a well-characterized cprTKZEBACD gene cluster. Redox active components were identified in concentrated suspensions of cells grown on formate and Cl-OHPA or formate and fumarate, using electron paramagnetic resonance (EPR), visible spectroscopy, and high-performance liquid chromatography (HPLC) analysis of membrane extracts. In cell suspensions, these components were reduced upon addition of formate and oxidized after addition of Cl-OHPA, indicating involvement in organohalide respiration. Genome analysis revealed genes that likely encode the identified components of the electron transport chain from formate to fumarate or Cl-OHPA. Data presented here suggest that the first part of the electron transport chain from formate to fumarate or Cl-OHPA is shared. Electrons are channeled from an outward-facing formate dehydrogenase via menaquinones to a fumarate reductase located at the cytoplasmic face of the membrane. When Cl-OHPA is the terminal electron acceptor, electrons are transferred from menaquinones to outward-facing CprA, via an as-yet-unidentified membrane complex, and potentially an extracellular flavoprotein acting as an electron shuttle between the quinol dehydrogenase membrane complex and CprA.
脱卤脱硫杆菌能够以3-氯-4-羟基苯乙酸(Cl-OHPA)作为电子受体,通过有机卤化物呼吸进行生长。我们结合基因组测序、氧化还原活性成分的生化分析和鸟枪法蛋白质组学,来研究有机卤化物呼吸电子传递链的组成部分。脱卤脱硫杆菌JW/IU-DC1(T)的基因组由一条4,321,753 bp的单一环状染色体组成,GC含量为44.97%。该基因组包含4,252个基因,其中包括6个rRNA操纵子和6个预测的还原性脱卤酶。其中一个还原性脱卤酶CprA由一个特征明确的cprTKZEBACD基因簇编码。利用电子顺磁共振(EPR)、可见光谱和膜提取物的高效液相色谱(HPLC)分析,在以甲酸盐和Cl-OHPA或甲酸盐和富马酸盐为底物生长的细胞浓缩悬浮液中鉴定出氧化还原活性成分。在细胞悬浮液中,这些成分在加入甲酸盐后被还原,在加入Cl-OHPA后被氧化,表明它们参与了有机卤化物呼吸。基因组分析揭示了可能编码从甲酸盐到富马酸盐或Cl-OHPA的电子传递链中已鉴定成分的基因。本文提供的数据表明,从甲酸盐到富马酸盐或Cl-OHPA的电子传递链的第一部分是共用的。电子从外向型甲酸盐脱氢酶通过甲基萘醌传递到位于膜细胞质面的富马酸盐还原酶。当Cl-OHPA作为末端电子受体时,电子从甲基萘醌通过一个尚未鉴定的膜复合物,可能还有一个细胞外黄素蛋白,作为喹醇脱氢酶膜复合物和CprA之间的电子穿梭体,传递到外向型CprA。