College of Polymer Science and Polymer Engineering, University of Akron , Akron, Ohio 44325, United States.
ACS Appl Mater Interfaces. 2015 Jan 21;7(2):1153-9. doi: 10.1021/am506869k. Epub 2015 Jan 7.
In this study, we report the utilization of solution-processed high electrical conductive [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) combined with solution-processed TiO2 as the electron transport layer (ETL) to overcome extremely low electrical conductivity of solution-processed TiO2 ETL in planar heterojunction (PHJ) perovskite hybrid solar cells (pero-HSCs). Due to the much more preferable electron extraction and transportation of PC61BM at the cathode side, a tremendously boosted short-circuit current density (JSC), fill factor (FF) and enhanced power conversion efficiency (PCE) are observed. To further address the wettability issues of perovskite materials on the top of PC61BM, water-soluble fullerene derivative is applied to modulate the surface of PC61BM. Consequently, further advanced FF with slightly enlarged JSC and open-circuit voltage (VOC) are observed. The resulted PCE is comparable with the meso-superstructured solar cells in which high PCEs can be produced. Our studies certainly provide a simple approach to boost the efficiency of PHJ pero-HSCs.
在这项研究中,我们报告了使用溶液处理的高导电性[6,6]-苯基-C61-丁酸甲酯(PC61BM)与溶液处理的 TiO2 结合作为电子传输层(ETL),以克服平面异质结(PHJ)钙钛矿混合太阳能电池(pero-HSCs)中溶液处理 TiO2 ETL 的极低电导率。由于 PC61BM 在阴极侧具有更优异的电子提取和传输性能,因此观察到短路电流密度(JSC)、填充因子(FF)和功率转换效率(PCE)显著提高。为了进一步解决钙钛矿材料在 PC61BM 顶部的润湿性问题,我们使用水溶性富勒烯衍生物来修饰 PC61BM 的表面。因此,观察到进一步提高的 FF,同时略微增大了 JSC 和开路电压(VOC)。得到的 PCE 可与介孔超结构太阳能电池相媲美,其中可以产生较高的 PCE。我们的研究确实提供了一种简单的方法来提高 PHJ pero-HSCs 的效率。