Bhakta-Guha D, Saeed M E M, Greten H J, Efferth T
Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Staudinger Weg 5, 55128 Mainz, Germany.
Curr Med Chem. 2015;22(6):685-94. doi: 10.2174/0929867322666141212114529.
Cancer is a leading cause of mortality and the annual incidence of new cancer cases is rising worldwide. Due to the frequent development of resistance and the side effects of established anti-cancer drugs, the quest for new drugs with improved therapeutic features goes on. In contrast to cytotoxic chemotherapy of the past, the concept of targeted chemotherapy attempts to increase specificity of therapy by attacking tumor-related mechanisms. A novel emerging treatment concept represents the inhibition of centrosomal clustering. The centrosome regulates mitotic spindle formation assuring uniform separation of chromosomes to daughter cells. Many tumors contain supernumerary centrosomes, which contribute to aneuploidy induction via multipolar mitotic spindle formation. As spindle multipolarity leads to cell death, tumor cells developed centrosomal clustering mechanism to prevent multipolar spindle formation by coalescence of multiple centrosomes into two functional spindle poles. Inhibition of centrosome clustering represents a novel strategy for drug development and leads to the formation of multipolar spindles and subsequent cell death. In the present review, we report advances in understanding the biology of centrosomal clustering as well as enlist compounds capable of inducing the formation of multipolar spindles such as indolquinolizines, integrin-linked kinase inhibitors (QLT-0267), noscapinoids (EM011), phthalamide derivatives (TC11), griseofulvin, phenanthridines (PJ-34), CCC1-01, CW069 GF-15, colcemid, nocodazole, paclitaxel, and vinblastine. We also present in silico result of compounds that bind to γ-tubulin under the ambit of centrosomal clustering inhibition. We observed maximum binding efficacy in GF-15, CW069, paclitaxel and larotaxel with GF-15 exhibiting least energy of -8.4 Kcal/mol and 0.7 μM Pki value.
癌症是主要的死亡原因,全球每年新增癌症病例的发病率正在上升。由于现有抗癌药物频繁出现耐药性以及副作用,人们一直在寻求具有更好治疗特性的新药。与过去的细胞毒性化疗不同,靶向化疗的概念试图通过攻击肿瘤相关机制来提高治疗的特异性。一种新兴的治疗概念是抑制中心体聚集。中心体调节有丝分裂纺锤体的形成,确保染色体均匀分离到子细胞中。许多肿瘤含有多余的中心体,这些中心体通过多极有丝分裂纺锤体的形成导致非整倍体的产生。由于纺锤体多极性会导致细胞死亡,肿瘤细胞发展出中心体聚集机制,通过将多个中心体合并成两个功能性纺锤极来防止多极纺锤体的形成。抑制中心体聚集是药物开发的一种新策略,会导致多极纺锤体的形成及随后的细胞死亡。在本综述中,我们报告了在理解中心体聚集生物学方面的进展,并列出了能够诱导多极纺锤体形成的化合物,如吲哚喹嗪、整合素连接激酶抑制剂(QLT - 0267)、那可丁类化合物(EM011)、邻苯二甲酰胺衍生物(TC11)、灰黄霉素、菲啶类化合物(PJ - 34)、CCC1 - 01、CW069、GF - 15、秋水仙酰胺、诺考达唑、紫杉醇和长春碱。我们还展示了在中心体聚集抑制范围内与γ - 微管蛋白结合的化合物的计算机模拟结果。我们观察到GF - 15、CW069、紫杉醇和拉罗他赛具有最大结合效力,其中GF - 15表现出最低能量为 - 8.4千卡/摩尔和0.7微摩尔的Pki值。