Naganathan Sundar Ram, Fürthauer Sebastian, Nishikawa Masatoshi, Jülicher Frank, Grill Stephan W
Biotechnology Center, Technical University Dresden, Dresden, Germany.
Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.
Elife. 2014 Dec 17;3:e04165. doi: 10.7554/eLife.04165.
Many developmental processes break left-right (LR) symmetry with a consistent handedness. LR asymmetry emerges early in development, and in many species the primary determinant of this asymmetry has been linked to the cytoskeleton. However, the nature of the underlying chirally asymmetric cytoskeletal processes has remained elusive. In this study, we combine thin-film active chiral fluid theory with experimental analysis of the C. elegans embryo to show that the actomyosin cortex generates active chiral torques to facilitate chiral symmetry breaking. Active torques drive chiral counter-rotating cortical flow in the zygote, depend on myosin activity, and can be altered through mild changes in Rho signaling. Notably, they also execute the chiral skew event at the 4-cell stage to establish the C. elegans LR body axis. Taken together, our results uncover a novel, large-scale physical activity of the actomyosin cytoskeleton that provides a fundamental mechanism for chiral morphogenesis in development.
许多发育过程会打破左右(LR)对称性,形成一致的手性。LR不对称性在发育早期出现,在许多物种中,这种不对称性的主要决定因素与细胞骨架有关。然而,潜在的手性不对称细胞骨架过程的本质仍然难以捉摸。在这项研究中,我们将薄膜活性手性流体理论与秀丽隐杆线虫胚胎的实验分析相结合,以表明肌动球蛋白皮层产生活性手性扭矩,以促进手性对称性破缺。活性扭矩驱动合子中手性反向旋转的皮层流动,依赖于肌球蛋白活性,并且可以通过Rho信号的轻微变化而改变。值得注意的是,它们还在4细胞阶段执行手性偏斜事件,以建立秀丽隐杆线虫的LR体轴。综上所述,我们的结果揭示了肌动球蛋白细胞骨架一种新的大规模物理活动,为发育中的手性形态发生提供了一种基本机制。