Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
Philos Trans R Soc Lond B Biol Sci. 2020 Oct 12;375(1809):20190555. doi: 10.1098/rstb.2019.0555. Epub 2020 Aug 24.
Cell polarity is the asymmetric distribution of cellular components along a defined axis. Polarity relies on complex signalling networks between conserved patterning proteins, including the PAR (titioning defective) proteins, which become segregated in response to upstream symmetry breaking cues. Although the mechanisms that drive the asymmetric localization of these proteins are dependent upon cell type and context, in many cases the regulation of actomyosin cytoskeleton dynamics is central to the transport, recruitment and/or stabilization of these polarity effectors into defined subcellular domains. The transport or advection of PAR proteins by an actomyosin flow was first observed in the s zygote more than a decade ago. Since then a multifaceted approach, using molecular methods, high-throughput screens, and biophysical and computational models, has revealed further aspects of this flow and how polarity regulators respond to and modulate it. Here, we review recent findings on the interplay between actomyosin flow and the PAR patterning networks in the polarization of the zygote. We also discuss how these discoveries and developed methods are shaping our understanding of other flow-dependent polarizing systems. This article is part of a discussion meeting issue 'Contemporary morphogenesis'.
细胞极性是指细胞成分沿着特定轴的不对称分布。极性依赖于保守模式蛋白之间的复杂信号网络,包括 PAR(分隔缺陷)蛋白,这些蛋白会根据上游对称性破坏信号进行分隔。尽管驱动这些蛋白质不对称定位的机制取决于细胞类型和上下文,但在许多情况下,肌动球蛋白细胞骨架动力学的调节是将这些极性效应器运输、招募和/或稳定到特定亚细胞区域的核心。十多年前,人们首次在合子中观察到肌动球蛋白流对 PAR 蛋白的运输或平流作用。从那时起,使用分子方法、高通量筛选、生物物理和计算模型的多方面方法揭示了这种流动的更多方面,以及极性调节剂如何对其做出反应并进行调节。在这里,我们回顾了最近关于肌动球蛋白流与合子极化中 PAR 模式网络之间相互作用的发现。我们还讨论了这些发现和开发的方法如何塑造我们对其他依赖流动的极化系统的理解。本文是“当代形态发生学”讨论会议的一部分。