Neahring Lila, He Yifei, Cho Nathan H, Liu Gaoxiang, Fernandes Jonathan, Rux Caleb J, Nakos Konstantinos, Subramanian Radhika, Upadhyayula Srigokul, Yildiz Ahmet, Dumont Sophie
Department of Bioengineering & Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.
Developmental & Stem Cell Biology Graduate Program, University of California San Francisco, San Francisco, CA, USA.
bioRxiv. 2023 Dec 10:2023.12.10.570990. doi: 10.1101/2023.12.10.570990.
At each cell division, nanometer-scale motors and microtubules give rise to the micron-scale spindle. Many mitotic motors step helically around microtubules in vitro, and most are predicted to twist the spindle in a left-handed direction. However, the human spindle exhibits only slight global twist, raising the question of how these molecular torques are balanced. Here, using lattice light sheet microscopy, we find that anaphase spindles in the epithelial cell line MCF10A have a high baseline twist, and we identify factors that both increase and decrease this twist. The midzone motors KIF4A and MKLP1 are redundantly required for left-handed twist at anaphase, and we show that KIF4A generates left-handed torque in vitro. The actin cytoskeleton also contributes to left-handed twist, but dynein and its cortical recruitment factor LGN counteract it. Together, our work demonstrates that force generators regulate twist in opposite directions from both within and outside the spindle, preventing strong spindle twist during chromosome segregation.
在每次细胞分裂时,纳米级的马达蛋白和微管会形成微米级的纺锤体。许多有丝分裂马达蛋白在体外围绕微管呈螺旋状移动,并且大多数预计会使纺锤体向左旋转。然而,人类纺锤体仅表现出轻微的整体扭转,这就引发了这些分子扭矩如何平衡的问题。在这里,我们使用晶格光片显微镜发现,上皮细胞系MCF10A中的后期纺锤体具有较高的基线扭转,并且我们确定了增加和减少这种扭转的因素。中区马达蛋白KIF4A和MKLP1在后期左旋扭转中是冗余必需的,并且我们表明KIF4A在体外产生左旋扭矩。肌动蛋白细胞骨架也有助于左旋扭转,但动力蛋白及其皮质募集因子LGN会抵消它。总之,我们的工作表明,力产生器从纺锤体内部和外部以相反方向调节扭转,从而在染色体分离过程中防止纺锤体发生强烈扭转。