Suppr超能文献

利用全基因组测序数据预测复杂性状的遗传贡献。

Prediction of genetic contributions to complex traits using whole genome sequencing data.

作者信息

Yao Chen, Leng Ning, Weigel Kent A, Lee Kristine E, Engelman Corinne D, Meyers Kristin J

机构信息

Department of Dairy Science, University of Wisconsin, 1675 Observatory Drive, Madison, WI 53706, USA.

Department of Statistics, University of Wisconsin, 1220 Medical Sciences Center, 1300 University Ave, Madison, WI 53706, USA.

出版信息

BMC Proc. 2014 Jun 17;8(Suppl 1):S68. doi: 10.1186/1753-6561-8-S1-S68. eCollection 2014.

Abstract

Although markers identified by genome-wide association studies have individually strong statistical significance, their performance in prediction remains limited. Our goal was to use animal breeding genomic prediction models to predict additive genetic contributions for systolic blood pressure (SBP) using whole genome sequencing data with different validation designs. The additive genetic contributions of SBP were estimated via linear mixed model. Rare variants (MAF<0.05) were collapsed through the k-means method to create a "collapsed single-nucleotide polymorphisms." Prediction of the additive genomic contributions of SBP was conducted using genomic Best Linear Unbiased Predictor (GBLUP) and BayesCπ. Estimates of predictive accuracy were compared using common single-nucleotide polymorphisms (SNPs) versus common and collapsed SNPs, and for prediction within and across families. The additive genetic variance of SBP contributed to 18% of the phenotypic variance (h(2) = 0.18). BayesCπ had slightly better prediction accuracies than GBLUP. In both models, within-family predictions had higher accuracies both in the training and testing set than didacross-family design. Collapsing rare variants via the k-means method and adding to the common SNPs did not improve prediction accuracies. The prediction model, including both pedigree and genomic information, achieved a slightly higher accuracy than using either source of information alone. Prediction of genetic contributions to complex traits is feasible using whole genome sequencing and statistical methods borrowed from animal breeding. The relatedness of individuals between the training and testing set strongly affected the performance of prediction models. Methods for inclusion of rare variants in these models need more development.

摘要

尽管全基因组关联研究确定的标记各自具有很强的统计学意义,但其预测性能仍然有限。我们的目标是使用动物育种基因组预测模型,利用具有不同验证设计的全基因组测序数据来预测收缩压(SBP)的加性遗传贡献。通过线性混合模型估计SBP的加性遗传贡献。通过k均值法对稀有变异(MAF<0.05)进行合并,以创建“合并单核苷酸多态性”。使用基因组最佳线性无偏预测器(GBLUP)和BayesCπ对SBP的加性基因组贡献进行预测。使用常见单核苷酸多态性(SNP)与常见和合并的SNP,以及在家族内和家族间进行预测,比较预测准确性的估计值。SBP的加性遗传方差占表型方差的18%(h(2)=0.18)。BayesCπ的预测准确性略优于GBLUP。在两个模型中,家族内预测在训练集和测试集中的准确性均高于家族间设计。通过k均值法合并稀有变异并添加到常见SNP中并没有提高预测准确性。包含系谱和基因组信息的预测模型比单独使用任何一种信息来源都能达到略高的准确性。使用全基因组测序和从动物育种中借鉴的统计方法来预测复杂性状的遗传贡献是可行的。训练集和测试集之间个体的亲缘关系强烈影响预测模型的性能。在这些模型中纳入稀有变异的方法需要进一步发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee52/4143683/d9abb43d0168/1753-6561-8-S1-S68-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验