Suppr超能文献

使用全基因组测序数据检测罕见变异的高级批判方法。

Higher criticism approach to detect rare variants using whole genome sequencing data.

作者信息

Xuan Jing, Yang Li, Wu Zheyang

机构信息

Department of Mathematical Science, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609-2280, USA.

出版信息

BMC Proc. 2014 Jun 17;8(Suppl 1 Genetic Analysis Workshop 18Vanessa Olmo):S14. doi: 10.1186/1753-6561-8-S1-S14. eCollection 2014.

Abstract

Because of low statistical power of single-variant tests for whole genome sequencing (WGS) data, the association test for variant groups is a key approach for genetic mapping. To address the features of sparse and weak genetic effects to be detected, the higher criticism (HC) approach has been proposed and theoretically has proven optimal for detecting sparse and weak genetic effects. Here we develop a strategy to apply the HC approach to WGS data that contains rare variants as the majority. By using Genetic Analysis Workshop 18 "dose" genetic data with simulated phenotypes, we assess the performance of HC under a variety of strategies for grouping variants and collapsing rare variants. The HC approach is compared with the minimal p-value method and the sequence kernel association test. The results show that the HC approach is preferred for detecting weak genetic effects.

摘要

由于全基因组测序(WGS)数据的单变异检测统计功效较低,变异组关联检测是基因定位的关键方法。为应对待检测的稀疏且微弱遗传效应的特征,已提出更高批评(HC)方法,且理论上已证明该方法在检测稀疏和微弱遗传效应方面是最优的。在此,我们开发了一种策略,将HC方法应用于以罕见变异为主的WGS数据。通过使用遗传分析研讨会18的“剂量”遗传数据及模拟表型,我们评估了HC方法在多种变异分组和合并罕见变异策略下的性能。将HC方法与最小p值法和序列核关联检验进行了比较。结果表明,在检测微弱遗传效应方面,HC方法更具优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bf2/4145405/6721c73b828d/1753-6561-8-S1-S14-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验