Suppr超能文献

超导 cuprates 中沿节线方向的磁激发各向异性软化。

Anisotropic softening of magnetic excitations along the nodal direction in superconducting cuprates.

机构信息

Institute of Condensed Matter Physics (ICMP), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.

Département de Physique de la Matière Condensée, Université de Genève, 24 Quai Ernest-Ansermet, 1211 Geneva, Switzerland.

出版信息

Nat Commun. 2014 Dec 18;5:5760. doi: 10.1038/ncomms6760.

Abstract

The high-Tc cuprate superconductors are close to antiferromagnetic order. Recent measurements of magnetic excitations have reported an intriguing similarity to the spin waves--magnons--of the antiferromagnetic insulating parent compounds, suggesting that magnons may survive in damped, broadened form throughout the phase diagram. Here we show by resonant inelastic X-ray scattering on Bi(2)Sr(2)CaCu(2)O(8+δ) (Bi-2212) that the analogy with spin waves is only partial. The magnon-like features collapse along the nodal direction in momentum space and exhibit a photon energy dependence markedly different from the Mott-insulating case. These observations can be naturally described by the continuum of charge and spin excitations of correlated electrons. The persistence of damped magnons could favour scenarios for superconductivity built from quasiparticles coupled to spin fluctuations. However, excitation spectra composed of particle-hole excitations suggest that superconductivity emerges from a coherent treatment of electronic spin and charge in the form of quasiparticles with very strong magnetic correlations.

摘要

高温超导铜酸盐接近于反铁磁有序。最近对磁激发的测量报告了一种有趣的相似性,即与反铁磁绝缘母体化合物的自旋波(磁振子)相似,这表明在整个相图中,磁振子可能以阻尼、展宽的形式存在。在这里,我们通过在 Bi(2)Sr(2)CaCu(2)O(8+δ)(Bi-2212)上的共振非弹性 X 射线散射表明,与自旋波的类比只是部分的。类似磁振子的特征在动量空间的节点方向上坍塌,并表现出与莫特绝缘情况明显不同的光子能量依赖性。这些观察结果可以用关联电子的电荷和自旋激发的连续统自然地描述。阻尼磁振子的持续存在可能有利于构建来自与自旋涨落耦合的准粒子的超导性的情景。然而,由粒子-空穴激发组成的激发谱表明,超导性源于电子自旋和电荷的相干处理,其形式为具有很强磁关联的准粒子。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验