Suppr超能文献

Synthesis and processing of kinetoplast DNA minicircles in Trypanosoma equiperdum.

作者信息

Ryan K A, Englund P T

机构信息

John Hopkins School of Medicine, Baltimore, Maryland 21205.

出版信息

Mol Cell Biol. 1989 Aug;9(8):3212-7. doi: 10.1128/mcb.9.8.3212-3217.1989.

Abstract

Kinetoplast DNA, the mitochondrial DNA in trypanosomes, is a giant network containing topologically interlocked minicircles. Replication occurs on free minicircles that have been detached from the network. In this paper, we report studies on the synthesis and processing of the minicircle L and H strands. Analysis of free minicircles from Trypanosoma equiperdum by two-dimensional agarose gel electrophoresis indicated that elongating L strands are present on theta structures. Hybridization studies indicated that L-strand elongation is continuous and unidirectional, starting near nucleotide 805 and proceeding around the entire minicircle. The theta structures segregate into monomeric progeny minicircles, and those with a newly synthesized L strand have a 8-nucleotide gap between nucleotides 805 and 814 (J. M. Ntambi, T. A. Shapiro, K. A. Ryan, and P. T. Englund, J. Biol. Chem. 261:11890-11895, 1986). These molecules are reattached to the network, where repair of the gap takes place. Of the molecules labeled during a 10-min pulse with [3H]thymidine, gap filling occurred on half within about 15 min and on virtually all by 60 min; however, there was no detectable covalent closure of the newly synthesized L strand by 60 min.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验