Asztalos Emese, Sipka Gábor, Maróti Péter
Department of Medical Physics, University of Szeged, Szeged, Rerrich Béla tér 1, 6720, Hungary.
Photosynth Res. 2015 Apr;124(1):31-44. doi: 10.1007/s11120-014-0070-0. Epub 2014 Dec 20.
The dark relaxation of the yield of variable BChl fluorescence in the 10(-5)-10 s time range is measured after laser diode (808 nm) excitation of variable duration in intact cells of photosynthetic bacteria Rba. sphaeroides, Rsp. rubrum, and Rvx. gelatinosus under various treatments of redox agents, inhibitors, and temperature. The kinetics of the relaxation is complex and much wider extended than a monoexponential function. The longer is the excitation, the slower is the relaxation which is determined by the redox states, sizes, and accessibility of the pools of cytochrome [Formula: see text] and quinone for donor and acceptor side-limited bacterial strains, respectively. The kinetics of fluorescence decay reflects the opening kinetics of the closed RC. The relaxation is controlled preferentially by the rate of re-reduction of the oxidized dimer by mobile cytochrome [Formula: see text] in Rba. sphaeroides and Rsp. rubrum and by the rate constant of the [Formula: see text] interquinone electron transfer, (350 μs)(-1) and/or the quinol/quinone exchange at the acceptor side in Rvx. gelatinosus. The commonly used acceptor side inhibitors (e.g., terbutryn) demonstrate kinetically limited block of re-oxidation of the primary quinone. The observations are interpreted in frame of a minimum kinetic and energetic model of electron transfer reactions in bacterial RC of intact cells.
在光合细菌球形红杆菌(Rba. sphaeroides)、深红螺菌(Rsp. rubrum)和嗜胶红游动菌(Rvx. gelatinosus)的完整细胞中,用不同持续时间的激光二极管(808 nm)激发后,测量了10⁻⁵ - 10秒时间范围内可变叶绿素荧光产率的暗弛豫。在氧化还原试剂、抑制剂和温度的各种处理下进行测量。弛豫动力学很复杂,比单指数函数的范围宽得多。激发时间越长,弛豫越慢,这分别由供体侧和受体侧受限的细菌菌株中细胞色素[公式:见原文]和醌池的氧化还原状态、大小和可及性决定。荧光衰减动力学反映了封闭反应中心(RC)的开放动力学。在球形红杆菌和深红螺菌中,弛豫主要由移动细胞色素[公式:见原文]对氧化二聚体的再还原速率控制,在嗜胶红游动菌中则由醌间电子转移的速率常数(350 μs⁻¹)和/或受体侧的醌醇/醌交换控制。常用的受体侧抑制剂(如特丁净)在动力学上显示出对初级醌再氧化的有限阻断。这些观察结果在完整细胞细菌反应中心电子转移反应的最小动力学和能量模型框架内进行了解释。