Cartron Michaël L, Olsen John D, Sener Melih, Jackson Philip J, Brindley Amanda A, Qian Pu, Dickman Mark J, Leggett Graham J, Schulten Klaus, Neil Hunter C
Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.
Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Biochim Biophys Acta. 2014 Oct;1837(10):1769-80. doi: 10.1016/j.bbabio.2014.02.003. Epub 2014 Feb 13.
Photosynthesis converts absorbed solar energy to a protonmotive force, which drives ATP synthesis. The membrane network of chlorophyll-protein complexes responsible for light absorption, photochemistry and quinol (QH2) production has been mapped in the purple phototrophic bacterium Rhodobacter (Rba.) sphaeroides using atomic force microscopy (AFM), but the membrane location of the cytochrome bc1 (cytbc1) complexes that oxidise QH2 to quinone (Q) to generate a protonmotive force is unknown. We labelled cytbc1 complexes with gold nanobeads, each attached by a Histidine10 (His10)-tag to the C-terminus of cytc1. Electron microscopy (EM) of negatively stained chromatophore vesicles showed that the majority of the cytbc1 complexes occur as dimers in the membrane. The cytbc1 complexes appeared to be adjacent to reaction centre light-harvesting 1-PufX (RC-LH1-PufX) complexes, consistent with AFM topographs of a gold-labelled membrane. His-tagged cytbc1 complexes were retrieved from chromatophores partially solubilised by detergent; RC-LH1-PufX complexes tended to co-purify with cytbc1 whereas LH2 complexes became detached, consistent with clusters of cytbc1 complexes close to RC-LH1-PufX arrays, but not with a fixed, stoichiometric cytbc1-RC-LH1-PufX supercomplex. This information was combined with a quantitative mass spectrometry (MS) analysis of the RC, cytbc1, ATP synthase, cytaa3 and cytcbb3 membrane protein complexes, to construct an atomic-level model of a chromatophore vesicle comprising 67 LH2 complexes, 11 LH1-RC-PufX dimers & 2 RC-LH1-PufX monomers, 4 cytbc1 dimers and 2 ATP synthases. Simulation of the interconnected energy, electron and proton transfer processes showed a half-maximal ATP turnover rate for a light intensity equivalent to only 1% of bright sunlight. Thus, the photosystem architecture of the chromatophore is optimised for growth at low light intensities.
光合作用将吸收的太阳能转化为质子动力,进而驱动ATP的合成。利用原子力显微镜(AFM)已绘制出紫色光合细菌球形红杆菌(Rba.)sphaeroides中负责光吸收、光化学和醌醇(QH2)生成的叶绿素 - 蛋白质复合物的膜网络,但将QH2氧化为醌(Q)以产生质子动力的细胞色素bc1(cytbc1)复合物的膜定位尚不清楚。我们用金纳米珠标记cytbc1复合物,每个金纳米珠通过一个组氨酸10(His10)标签连接到cytc1的C末端。对负染色的载色体囊泡进行电子显微镜(EM)观察表明,大多数cytbc1复合物以二聚体形式存在于膜中。cytbc1复合物似乎与反应中心光捕获1 - PufX(RC - LH1 - PufX)复合物相邻,这与金标记膜的AFM地形图一致。从经去污剂部分溶解的载色体中回收His标签的cytbc1复合物;RC - LH1 - PufX复合物倾向于与cytbc1共纯化,而LH2复合物则会分离,这与cytbc1复合物靠近RC - LH1 - PufX阵列的簇状结构一致,但与固定的、化学计量的cytbc1 - RC - LH1 - PufX超复合物不一致。该信息与对RC、cytbc1、ATP合酶、细胞色素aa3和细胞色素cbb3膜蛋白复合物的定量质谱(MS)分析相结合,构建了一个载色体囊泡的原子水平模型,该模型包含67个LH2复合物、11个LH1 - RC - PufX二聚体和2个RC - LH1 - PufX单体、4个cytbc1二聚体和2个ATP合酶。对相互关联的能量、电子和质子转移过程的模拟表明,对于仅相当于明亮阳光1%的光强度,ATP周转速率达到最大值的一半。因此,载色体的光系统结构针对低光强度下的生长进行了优化。