Suppr超能文献

识别不断发展的生命科学本体中的词汇和语义变化模式,以提供映射适配的信息。

Recognizing lexical and semantic change patterns in evolving life science ontologies to inform mapping adaptation.

机构信息

Faculty of Campo Limpo Paulista, Rua Guatemala, 167, 13231-230 Campo Limpo Paulista, SP, Brazil; Luxembourg Institute of Science and Technology, 29 Avenue John F. Kennedy, L-1855 Luxembourg, Luxembourg.

Luxembourg Institute of Science and Technology, 29 Avenue John F. Kennedy, L-1855 Luxembourg, Luxembourg.

出版信息

Artif Intell Med. 2015 Mar;63(3):153-70. doi: 10.1016/j.artmed.2014.11.002. Epub 2014 Dec 6.

Abstract

BACKGROUND

Mappings established between life science ontologies require significant efforts to maintain them up to date due to the size and frequent evolution of these ontologies. In consequence, automatic methods for applying modifications on mappings are highly demanded. The accuracy of such methods relies on the available description about the evolution of ontologies, especially regarding concepts involved in mappings. However, from one ontology version to another, a further understanding of ontology changes relevant for supporting mapping adaptation is typically lacking.

METHODS

This research work defines a set of change patterns at the level of concept attributes, and proposes original methods to automatically recognize instances of these patterns based on the similarity between attributes denoting the evolving concepts. This investigation evaluates the benefits of the proposed methods and the influence of the recognized change patterns to select the strategies for mapping adaptation.

RESULTS

The summary of the findings is as follows: (1) the Precision (>60%) and Recall (>35%) achieved by comparing manually identified change patterns with the automatic ones; (2) a set of potential impact of recognized change patterns on the way mappings is adapted. We found that the detected correlations cover ∼66% of the mapping adaptation actions with a positive impact; and (3) the influence of the similarity coefficient calculated between concept attributes on the performance of the recognition algorithms.

CONCLUSIONS

The experimental evaluations conducted with real life science ontologies showed the effectiveness of our approach to accurately characterize ontology evolution at the level of concept attributes. This investigation confirmed the relevance of the proposed change patterns to support decisions on mapping adaptation.

摘要

背景

由于生命科学本体的规模和频繁演变,建立生命科学本体之间的映射需要大量的努力来保持其最新状态。因此,非常需要自动方法来应用对映射的修改。这些方法的准确性依赖于有关本体演变的可用描述,尤其是涉及映射中的概念的描述。然而,从一个本体版本到另一个版本,通常缺乏对支持映射自适应的相关本体变化的进一步理解。

方法

本研究工作定义了一组概念属性级别的变化模式,并提出了基于表示演变概念的属性之间的相似性来自动识别这些模式实例的原始方法。这项研究评估了所提出方法的好处以及识别出的变化模式对选择映射自适应策略的影响。

结果

调查结果总结如下:(1)通过将手动识别的变化模式与自动识别的变化模式进行比较,得出的准确率(>60%)和召回率(>35%);(2)一组识别出的变化模式对映射自适应方式的潜在影响。我们发现,检测到的相关性涵盖了对映射适应具有积极影响的约 66%的操作;(3)在概念属性之间计算的相似系数对识别算法性能的影响。

结论

使用真实的生命科学本体进行的实验评估表明,我们的方法在概念属性级别准确刻画本体演变的有效性。这项研究证实了所提出的变化模式对于支持映射自适应决策的相关性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验