Dos Reis Julio Cesar, Pruski Cédric, Da Silveira Marcos, Reynaud-Delaître Chantal
Institute of Computing, University of Campinas, Av. Albert Einstein, 1251, Cidade Universitária Zeferino Vaz, 13083-852 Campinas, SP, Brazil.
Luxembourg Institute of Science and Technology, 29 Avenue John F. Kennedy, L-1855 Luxembourg, Luxembourg.
J Biomed Inform. 2015 Jun;55:153-73. doi: 10.1016/j.jbi.2015.04.001. Epub 2015 Apr 15.
Knowledge Organization Systems (KOS) and their associated mappings play a central role in several decision support systems. However, by virtue of knowledge evolution, KOS entities are modified over time, impacting mappings and potentially turning them invalid. This requires semi-automatic methods to maintain such semantic correspondences up-to-date at KOS evolution time.
We define a complete and original framework based on formal heuristics that drives the adaptation of KOS mappings. Our approach takes into account the definition of established mappings, the evolution of KOS and the possible changes that can be applied to mappings. This study experimentally evaluates the proposed heuristics and the entire framework on realistic case studies borrowed from the biomedical domain, using official mappings between several biomedical KOSs.
We demonstrate the overall performance of the approach over biomedical datasets of different characteristics and sizes. Our findings reveal the effectiveness in terms of precision, recall and F-measure of the suggested heuristics and methods defining the framework to adapt mappings affected by KOS evolution. The obtained results contribute and improve the quality of mappings over time.
The proposed framework can adapt mappings largely automatically, facilitating thus the maintenance task. The implemented algorithms and tools support and minimize the work of users in charge of KOS mapping maintenance.
知识组织系统(KOS)及其相关映射在多个决策支持系统中发挥着核心作用。然而,由于知识的演变,KOS实体随时间而发生修改,这会影响映射并可能使其失效。这就需要半自动方法在KOS演变时保持此类语义对应关系的最新状态。
我们基于形式启发式定义了一个完整且原创的框架,用于驱动KOS映射的适配。我们的方法考虑了既定映射的定义、KOS的演变以及可应用于映射的可能变化。本研究使用来自几个生物医学KOS之间的官方映射,在从生物医学领域借用的实际案例研究中对所提出的启发式方法和整个框架进行了实验评估。
我们展示了该方法在不同特征和规模的生物医学数据集上的整体性能。我们的研究结果揭示了所建议的启发式方法以及定义受KOS演变影响的映射适配框架的方法在精度、召回率和F值方面的有效性。随着时间的推移,所获得的结果有助于提高映射的质量。
所提出的框架能够在很大程度上自动适配映射,从而便于维护任务。所实现的算法和工具支持并最小化负责KOS映射维护的用户的工作量。