Lu Zonghuan, Barnard David, Shaikh Tanvir R, Meng Xing, Mannella Carmen A, Yassin Aymen, Agrawal Rajendra, Wagenknecht Terence, Lu Toh-Ming
Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, NY 12180.
Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201.
J Micromech Microeng. 2014 Nov 1;24(11):115001. doi: 10.1088/0960-1317/24/11/115001.
Time-resolved cryo electron microscopy (TRCEM) has emerged as a powerful technique for transient structural characterization of isolated biomacromolecular complexes in their native state within the time scale of seconds to milliseconds. For TRCEM sample preparation, microfluidic device [9] has been demonstrated to be a promising approach to facilitate TRCEM biological sample preparation. It is capable of achieving rapidly aqueous sample mixing, controlled reaction incubation, and sample deposition on electron microscopy (EM) grids for rapid freezing. One of the critical challenges is to transfer samples to cryo-EM grids from the microfluidic device. By using microspraying method, the generated droplet size needs to be controlled to facilitate the thin ice film formation on the grid surface for efficient data collection, while not too thin to be dried out before freezing, i.e., optimized mean droplet size needs to be achieved. In this work, we developed a novel monolithic three dimensional (3D) annular gas-assisted microfluidic sprayer using 3D MEMS (MicroElectroMechanical System) fabrication techniques. The microsprayer demonstrated dense and consistent microsprays with average droplet size between 6-9 μm, which fulfilled the above droplet size requirement for TRCEM sample preparation. With droplet density of around 12-18 per grid window (window size is 58×58 μm), and the data collectible thin ice region of >50% total wetted area, we collected ~800-1000 high quality CCD micrographs in a 6-8 hour period of continuous effort. This level of output is comparable to what were routinely achieved using cryo-grids prepared by conventional blotting and manual data collection. In this case, weeks of data collection process with the previous device [9] has shortened to a day or two. And hundreds of microliter of valuable sample consumption can be reduced to only a small fraction.
时间分辨冷冻电子显微镜(TRCEM)已成为一种强大的技术,用于在秒到毫秒的时间尺度内对处于天然状态的分离生物大分子复合物进行瞬态结构表征。对于TRCEM样品制备,微流控装置[9]已被证明是促进TRCEM生物样品制备的一种有前景的方法。它能够实现快速的水性样品混合、可控的反应孵育以及将样品沉积在电子显微镜(EM)网格上以进行快速冷冻。其中一个关键挑战是将样品从微流控装置转移到冷冻电子显微镜网格上。通过使用微喷雾方法,需要控制生成的液滴大小,以促进在网格表面形成薄冰膜,从而进行高效的数据收集,同时又不能太薄以至于在冷冻前就干涸,即需要达到优化的平均液滴大小。在这项工作中,我们使用3D微机电系统(MEMS)制造技术开发了一种新型的整体式三维(3D)环形气体辅助微流控喷雾器。该微喷雾器展示出密集且一致的微喷雾,平均液滴大小在6 - 9μm之间,满足了TRCEM样品制备的上述液滴大小要求。液滴密度约为每个网格窗口12 - 18个(窗口尺寸为58×58μm),且可收集数据的薄冰区域占总湿润面积的50%以上,我们在连续6 - 8小时的时间内收集了约800 - 1000张高质量的电荷耦合器件(CCD)显微照片。这种产出水平与使用传统印迹法制备的冷冻网格和手动数据收集常规获得的结果相当。在这种情况下,使用先前装置[9]需要数周的数据收集过程已缩短至一两天。并且数百微升的宝贵样品消耗可减少到仅一小部分。