Kontziampasis Dimitrios, Klebl David P, Iadanza Matthew G, Scarff Charlotte A, Kopf Florian, Sobott Frank, Monteiro Diana C F, Trebbin Martin, Muench Stephen P, White Howard D
School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK.
Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
IUCrJ. 2019 Sep 5;6(Pt 6):1024-1031. doi: 10.1107/S2052252519011345. eCollection 2019 Nov 1.
Structural biology generally provides static snapshots of protein conformations that can provide information on the functional mechanisms of biological systems. Time-resolved structural biology provides a means to visualize, at near-atomic resolution, the dynamic conformational changes that macromolecules undergo as they function. X-ray free-electron-laser technology has provided a powerful tool to study enzyme mechanisms at atomic resolution, typically in the femtosecond to picosecond timeframe. Complementary to this, recent advances in the resolution obtainable by electron microscopy and the broad range of samples that can be studied make it ideally suited to time-resolved approaches in the microsecond to millisecond timeframe to study large loop and domain motions in biomolecules. Here we describe a cryo-EM grid preparation device that permits rapid mixing, voltage-assisted spraying and vitrification of samples. It is shown that the device produces grids of sufficient ice quality to enable data collection from single grids that results in a sub-4 Å reconstruction. Rapid mixing can be achieved by blot-and-spray or mix-and-spray approaches with a delay of ∼10 ms, providing greater temporal resolution than previously reported mix-and-spray approaches.
结构生物学通常提供蛋白质构象的静态快照,这些快照可以提供有关生物系统功能机制的信息。时间分辨结构生物学提供了一种手段,能够以近原子分辨率可视化大分子在发挥功能时所经历的动态构象变化。X射线自由电子激光技术提供了一个强大的工具,可在原子分辨率下研究酶机制,通常是在飞秒到皮秒的时间尺度内。与此互补的是,电子显微镜可达到的分辨率的最新进展以及能够研究的广泛样本类型,使其非常适合在微秒到毫秒的时间尺度内采用时间分辨方法,以研究生物分子中的大环和结构域运动。在这里,我们描述了一种低温电子显微镜网格制备装置,该装置允许对样品进行快速混合、电压辅助喷雾和玻璃化。结果表明,该装置产生的网格具有足够的冰质量,能够从单个网格收集数据,从而实现亚4埃的重建。通过印迹-喷雾或混合-喷雾方法,延迟约10毫秒,可以实现快速混合,提供比以前报道的混合-喷雾方法更高的时间分辨率。