The James Franck Institute and Department of Chemistry, The University of Chicago , Chicago, Illinois 60637, United States.
ACS Nano. 2015 Jan 27;9(1):725-32. doi: 10.1021/nn5061805. Epub 2014 Dec 22.
The electronic structure of single InSb quantum dots (QDs) with diameters between 3 and 7 nm was investigated using atomic force microscopy (AFM) and scanning tunneling spectroscopy (STS). In this size regime, InSb QDs show strong quantum confinement effects which lead to discrete energy levels on both valence and conduction band states. Decrease of the QD size increases the measured band gap and the spacing between energy levels. Multiplets of equally spaced resonance peaks are observed in the tunneling spectra. There, multiplets originate from degeneracy lifting induced by QD charging. The tunneling spectra of InSb QDs are qualitatively different from those observed in the STS of other III-V materials, for example, InAs QDs, with similar band gap energy. Theoretical calculations suggest the electron tunneling occurs through the states connected with L-valley of InSb QDs rather than through states of the Γ-valley. This observation calls for better understanding of the role of indirect valleys in strongly quantum-confined III-V nanomaterials.
使用原子力显微镜(AFM)和扫描隧道谱(STS)研究了直径在 3 到 7nm 之间的单个 InSb 量子点(QD)的电子结构。在这个尺寸范围内,InSb QD 表现出强烈的量子限制效应,导致价带和导带态上的分立能级。QD 尺寸的减小会增加测量的带隙和能级之间的间距。在隧道谱中观察到等间距共振峰的多重峰。在这里,多重峰起源于由 QD 充电引起的简并消除。InSb QD 的隧道谱与在其他 III-V 材料(例如,具有相似带隙能量的 InAs QD)的 STS 中观察到的谱明显不同。理论计算表明,电子隧道通过与 InSb QD 的 L 谷连接的状态发生,而不是通过Γ谷的状态。这一观察结果要求更好地理解间接谷在强量子限制 III-V 纳米材料中的作用。