Suppr超能文献

通过可逆操作消除固体氧化物电化学电池的退化。

Eliminating degradation in solid oxide electrochemical cells by reversible operation.

机构信息

Department of Energy Conversion and Storage, Technical University of Denmark, Risø Campus, Frederiksborgvej 399, DK-4000 Roskilde, Denmark.

出版信息

Nat Mater. 2015 Feb;14(2):239-44. doi: 10.1038/nmat4165. Epub 2014 Dec 22.

Abstract

One promising energy storage technology is the solid oxide electrochemical cell (SOC), which can both store electricity as chemical fuels (electrolysis mode) and convert fuels to electricity (fuel-cell mode). The widespread use of SOCs has been hindered by insufficient long-term stability, in particular at high current densities. Here we demonstrate that severe electrolysis-induced degradation, which was previously believed to be irreversible, can be completely eliminated by reversibly cycling between electrolysis and fuel-cell modes, similar to a rechargeable battery. Performing steam electrolysis continuously at high current density (1 A cm(-2)), initially at 1.33 V (97% energy efficiency), led to severe microstructure deterioration near the oxygen-electrode/electrolyte interface and a corresponding large increase in ohmic resistance. After 4,000 h of reversible cycling, however, no microstructural damage was observed and the ohmic resistance even slightly improved. The results demonstrate the viability of applying SOCs for renewable electricity storage at previously unattainable reaction rates, and have implications for our fundamental understanding of degradation mechanisms that are usually assumed to be irreversible.

摘要

一种有前景的储能技术是固体氧化物电化学电池(SOC),它既可以将电能存储为化学燃料(电解模式),也可以将燃料转化为电能(燃料电池模式)。SOC 的广泛应用受到长期稳定性不足的限制,特别是在高电流密度下。在这里,我们证明了以前被认为是不可逆的严重电解诱导降解,可以通过在电解和燃料电池模式之间可逆循环来完全消除,类似于可充电电池。以 1 A cm(-2) 的高电流密度连续进行蒸汽电解(初始电压为 1.33 V,能量效率为 97%),导致在氧电极/电解质界面附近发生严重的微结构恶化,相应的欧姆电阻也大幅增加。然而,经过 4000 小时的可逆循环后,没有观察到微结构损伤,甚至欧姆电阻略有改善。研究结果表明,SOC 可用于以以前无法达到的反应速率进行可再生电力存储,这对我们理解通常被认为是不可逆的降解机制具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验