Yan Peng, Li Tao, Li Kang
Barrer Centre, Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom.
MOE Key Laboratory of Energy Thermal Conversion & Control, School of Energy and Environment, Southeast University, Nanjing 210096, China.
ACS Sustain Chem Eng. 2025 May 5;13(19):7005-7016. doi: 10.1021/acssuschemeng.4c10889. eCollection 2025 May 19.
The direct conversion of CO, preferably from direct air capture (DAC), and HO from seawater to syngas by renewable electricity, offers an alternative route toward a sustainable future for the chemical industry. To achieve this ambitious goal, an efficient electrochemical conversion route is preferred. However, high-performance and cost-effective devices for achieving such sustainable production are lacking. Here, we report an innovative micromonolithic solid oxide electrolysis cell (SOEC) device with a productivity of -2.4 A/cm at 1.4 V and an operational stability of ∼ -1.0 A/cm (-11.7 A/cm, 4387 N m /h/m) for 110 h; this device has an almost 1 order of magnitude greater cost-effectiveness and has substantial environmental benefits compared to conventional tubular and planar designs. The conceptual process design of prospective sustainable electrified syngas production has the potential to achieve 0.1 $/Nm and -0.92 kgCO/kg. Moreover, microstructural sensitivity, three-stage degradation mechanism, and mechanical features of the cell are studied to provide deep insights.
将一氧化碳(最好是来自直接空气捕获(DAC)的一氧化碳)和海水中的水通过可再生电力直接转化为合成气,为化学工业通向可持续未来提供了一条替代途径。为实现这一宏伟目标,首选高效的电化学转化路线。然而,目前缺乏用于实现这种可持续生产的高性能且具有成本效益的装置。在此,我们报道了一种创新的微整体式固体氧化物电解槽(SOEC)装置,其在1.4 V时的生产率为-2.4 A/cm²,在110小时内的运行稳定性为~ -1.0 A/cm²(-11.7 A/cm²,4387 N m³/h/m²);与传统的管状和平面设计相比,该装置的成本效益提高了近1个数量级,并且具有显著的环境效益。预期的可持续电气化合成气生产的概念工艺设计有可能实现0.1美元/立方米和-0.92千克二氧化碳/千克。此外,还研究了电池的微观结构敏感性、三阶段降解机制和机械特性,以提供深入的见解。