Kusama Y, Bernier M, Hearse D J
Cardiovascular Research, Rayne Institute, St. Thomas' Hospital, London, UK.
Circulation. 1989 Nov;80(5):1432-48. doi: 10.1161/01.cir.80.5.1432.
In a study of aerobically perfused rat hearts, the in situ photoactivation (530-590 nm) of rose bengal (a process that leads to the production of singlet oxygen and superoxide) has been shown to lead to the rapid development of electrocardiographic abnormalities and arrhythmias. With rose bengal concentrations of 1,000, 500, 250, 100, and 50 nmol/l (n = 6/group), photoactivation (3,600 lx) led to electrocardiographic changes (inversion of the T wave, Q-T prolongation, or both) after 3.8 +/- 0.9, 4.5 +/- 0.7, 11.8 +/- 2.1, 24.8 +/- 3.9, and 65.3 +/- 6.0 seconds), respectively; ventricular premature beats occurred in 100% of hearts after 0.5 +/- 0.2, 1.1 +/- 0.3, 2.2 +/- 0.7, 4.4 +/- 0.8, and 6.6 +/- 1.2 minutes, respectively. Ventricular tachycardia occurred in 83%, 83%, 83%, 67%, and 50% of hearts after 2.1 +/- 0.2, 2.1 +/- 0.4, 2.8 +/- 0.7, 5.7 +/- 2.0, and 11.2 +/- 1.9 minutes, respectively, and complete atrioventricular block in 100%, 100%, 100%, 100%, and 67% of hearts after 3.8 +/- 0.7, 6.5 +/- 1.0, 5.5 +/- 0.9, 13.8 +/- 1.0, and 14.1 +/- 0.9 minutes, respectively. With a fixed concentration (250 nmol/l) of rose bengal, similar light-response relations were observed. Photoactivation of rose bengal had no effect on heart rate but caused a transient (0-4 minutes) vasodilation followed by a progressive vasoconstriction. In further studies in which rose bengal was washed out for 10 minutes before photoactivation, several arrhythmias still developed, indicating that rose bengal binds strongly to tissue and acts as a cellular level rather than in the vascular compartment. To assess the reversibility of rose bengal-induced effects, hearts (n = 6/group) were perfused with rose bengal (250 nmol/l) for 1, 2, 4, 6, and 20 minutes followed by perfusion in the dark for 19, 18, 16, 14, and 0 minutes, respectively. During dark perfusion, the incidence of arrhythmias declined and any decrease in coronary flow was reversed. However, analysis of contents of adenosine triphosphate, creatine phosphate, lactate, and creatine kinase leakage indicated the occurrence of severe injury that did not abate on termination of photoactivation. Finally, although many arrhythmias developed before the onset of vasoconstriction, the reduction in flow with consequent ischemia was shown to exacerbate vulnerability to arrhythmias. In conclusion, short-lived reactive oxygen intermediates such as singlet oxygen and superoxide, which are produced during the photoactivation of rose bengal, can cause rapid and major damage to the heart and its function.
在一项对需氧灌注大鼠心脏的研究中,已表明孟加拉玫瑰红的原位光激活(530 - 590纳米)(该过程会导致单线态氧和超氧阴离子的产生)会导致心电图异常和心律失常迅速发展。当孟加拉玫瑰红浓度分别为1000、500、250、100和50纳摩尔/升(每组n = 6)时,光激活(3600勒克斯)分别在3.8±0.9、4.5±0.7、11.8±2.1、24.8±3.9和65.3±6.0秒后导致心电图改变(T波倒置、Q - T间期延长或两者皆有);室性早搏分别在0.5±0.2、1.1±0.3、2.2±0.7、4.4±0.8和6.6±1.2分钟后出现在100%的心脏中。室性心动过速分别在2.1±0.2、2.1±0.4、2.8±0.7、5.7±2.0和11.2±1.9分钟后出现在83%、83%、83%、67%和50%的心脏中,完全性房室传导阻滞分别在3.8±0.7、6.5±1.0、5.5±0.9、13.8±1.0和14.1±0.9分钟后出现在100%、100%、100%、100%和67%的心脏中。使用固定浓度(250纳摩尔/升)的孟加拉玫瑰红时,观察到了类似的光反应关系。孟加拉玫瑰红的光激活对心率没有影响,但会引起短暂(0 - 4分钟)的血管舒张,随后是进行性血管收缩。在进一步的研究中,在光激活前将孟加拉玫瑰红冲洗10分钟,仍出现了几种心律失常,这表明孟加拉玫瑰红与组织紧密结合,且作用于细胞水平而非血管腔室。为评估孟加拉玫瑰红诱导效应的可逆性,对心脏(每组n = 6)分别用孟加拉玫瑰红(250纳摩尔/升)灌注1、2、4、6和20分钟,然后分别在黑暗中灌注19、18、16、14和0分钟。在黑暗灌注期间,心律失常的发生率下降,冠状动脉血流的任何减少都得到了逆转。然而,对三磷酸腺苷、磷酸肌酸、乳酸含量以及肌酸激酶泄漏的分析表明发生了严重损伤,且在光激活终止后并未减轻。最后,尽管在血管收缩开始前出现了许多心律失常,但血流减少及随之而来的缺血被证明会加剧心律失常的易感性。总之,在孟加拉玫瑰红的光激活过程中产生的诸如单线态氧和超氧阴离子等短寿命活性氧中间体可对心脏及其功能造成迅速且严重的损害。