Suppr超能文献

衰竭豚鼠心肌细胞中线粒体网络兴奋性受损。

Impaired mitochondrial network excitability in failing guinea-pig cardiomyocytes.

作者信息

Goh Kah Yong, Qu Jing, Hong Huixian, Liu Ting, Dell'Italia Louis J, Wu Yong, O'Rourke Brian, Zhou Lufang

机构信息

Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, AL, USA.

Division of Cardiology, Department of Medicine, The Johns Hopkins University, Baltimore, MD, USA.

出版信息

Cardiovasc Res. 2016 Jan 1;109(1):79-89. doi: 10.1093/cvr/cvv230. Epub 2015 Oct 3.

Abstract

AIMS

Studies in guinea-pig cardiomyocytes show that reactive oxygen species (ROS) produced by a few mitochondria can propagate to their neighbours, triggering synchronized, cell-wide network oscillations via an ROS-induced ROS release (RIRR) mechanism. How mitochondria in cardiomyocytes from failing hearts (HF) respond to local oxidative stress perturbations has not been investigated. Since mitochondrial ultrastructure is reportedly disrupted in HF, and propagation of ROS signals depends on mitochondrial network integrity, we hypothesized that the laser flash-induced RIRR is altered in HF.

METHODS AND RESULTS

To test the hypothesis, pressure-overload HF was induced in guinea pigs by ascending aortic constriction leading to left ventricular dilatation and decreased ejection fraction after 8 weeks. Isolated cardiomyocytes were studied with two-photon/confocal microscopy to determine their basal oxidative stress and propensity to undergo mitochondrial depolarization/oscillations in response to local laser flash stimulations. The expression of mitofusin proteins and mitochondrial network structure were also analysed. Results showed that HF cardiomyocytes had higher baseline ROS levels and less reduced glutathione, and were more prone to laser flash-induced mitochondrial depolarization. In contrast, the delay between the laser flash and synchronized cell-wide network oscillations was prolonged in HF myocytes compared with shams, and the spatial extent of coupling was diminished, suggesting dampened RIRR and ROS signal propagation. In addition, the expressions of mitofusin proteins in HF myocardium were down-regulated compared with these from sham-operated animals, and the mitochondrial network structure altered.

CONCLUSION

The disrupted inter-mitochondrial tethering and loss of structural organization may underlie decreased ROS-dependent mitochondrial coupling in HF.

摘要

目的

对豚鼠心肌细胞的研究表明,少数线粒体产生的活性氧(ROS)可传播至相邻线粒体,通过活性氧诱导的活性氧释放(RIRR)机制触发全细胞范围的同步网络振荡。衰竭心脏(HF)心肌细胞中的线粒体如何应对局部氧化应激扰动尚未得到研究。由于据报道HF中线粒体超微结构遭到破坏,且ROS信号的传播依赖于线粒体网络的完整性,我们推测HF中激光闪光诱导的RIRR发生了改变。

方法与结果

为验证该假设,通过升主动脉缩窄诱导豚鼠发生压力超负荷性HF,8周后导致左心室扩张和射血分数降低。用双光子/共聚焦显微镜研究分离的心肌细胞,以确定其基础氧化应激以及对局部激光闪光刺激发生线粒体去极化/振荡的倾向。还分析了线粒体融合蛋白的表达和线粒体网络结构。结果显示,HF心肌细胞具有更高的基线ROS水平和更低的还原型谷胱甘肽水平,并且更容易发生激光闪光诱导的线粒体去极化。相比之下,与假手术组相比,HF心肌细胞中激光闪光与全细胞范围同步网络振荡之间的延迟延长,且耦联的空间范围减小,提示RIRR和ROS信号传播减弱。此外,与假手术动物的心肌相比,HF心肌中线粒体融合蛋白的表达下调,线粒体网络结构改变。

结论

线粒体间连接破坏和结构组织丧失可能是HF中ROS依赖性线粒体耦联减少的原因。

相似文献

1
Impaired mitochondrial network excitability in failing guinea-pig cardiomyocytes.
Cardiovasc Res. 2016 Jan 1;109(1):79-89. doi: 10.1093/cvr/cvv230. Epub 2015 Oct 3.
2
A reaction-diffusion model of ROS-induced ROS release in a mitochondrial network.
PLoS Comput Biol. 2010 Jan 29;6(1):e1000657. doi: 10.1371/journal.pcbi.1000657.
3
MitoQ regulates redox-related noncoding RNAs to preserve mitochondrial network integrity in pressure-overload heart failure.
Am J Physiol Heart Circ Physiol. 2020 Mar 1;318(3):H682-H695. doi: 10.1152/ajpheart.00617.2019. Epub 2020 Jan 31.
4
Dynamic modulation of Ca2+ sparks by mitochondrial oscillations in isolated guinea pig cardiomyocytes under oxidative stress.
J Mol Cell Cardiol. 2011 Nov;51(5):632-9. doi: 10.1016/j.yjmcc.2011.05.007. Epub 2011 May 27.
5
Mitochondrial ROS Drive Sudden Cardiac Death and Chronic Proteome Remodeling in Heart Failure.
Circ Res. 2018 Jul 20;123(3):356-371. doi: 10.1161/CIRCRESAHA.118.312708. Epub 2018 Jun 13.
6
Paraoxonase 2 prevents the development of heart failure.
Free Radic Biol Med. 2018 Jun;121:117-126. doi: 10.1016/j.freeradbiomed.2018.04.583. Epub 2018 May 2.
7
Glutathione oxidation as a trigger of mitochondrial depolarization and oscillation in intact hearts.
J Mol Cell Cardiol. 2008 Nov;45(5):650-60. doi: 10.1016/j.yjmcc.2008.07.017. Epub 2008 Aug 7.
10
Mitochondrial networks in cardiac myocytes reveal dynamic coupling behavior.
Biophys J. 2015 Apr 21;108(8):1922-33. doi: 10.1016/j.bpj.2015.01.040.

引用本文的文献

1
Novel Drug Targets in Diastolic Heart Disease.
Int J Mol Sci. 2025 Aug 20;26(16):8055. doi: 10.3390/ijms26168055.
2
Unraveling mitochondrial crosstalk: a new frontier in heart failure pathogenesis.
Front Cardiovasc Med. 2025 Jul 15;12:1641023. doi: 10.3389/fcvm.2025.1641023. eCollection 2025.
3
Clumpy Novel Mitochondrial Signatures in Irradiated Human Diabetic Buccal Cells: A Case Control Study.
Medeni Med J. 2025 Jun 26;40(2):93-100. doi: 10.4274/MMJ.galenos.2025.87120.
4
Mechano-energetic uncoupling in heart failure.
Nat Rev Cardiol. 2025 Jun 22. doi: 10.1038/s41569-025-01167-6.
6
Mitochondrial network remodeling of the diabetic heart: implications to ischemia related cardiac dysfunction.
Cardiovasc Diabetol. 2024 Jul 18;23(1):261. doi: 10.1186/s12933-024-02357-1.
7
Dialogue between mitochondria and endoplasmic reticulum-potential therapeutic targets for age-related cardiovascular diseases.
Front Pharmacol. 2024 Jun 13;15:1389202. doi: 10.3389/fphar.2024.1389202. eCollection 2024.
8
Characterization of the far-red fluorescent probe MitoView 633 for dynamic mitochondrial membrane potential measurement.
Front Physiol. 2023 Oct 23;14:1257739. doi: 10.3389/fphys.2023.1257739. eCollection 2023.
9
Mitochondrial dysfunction at the crossroad of cardiovascular diseases and cancer.
J Transl Med. 2023 Sep 19;21(1):635. doi: 10.1186/s12967-023-04498-5.

本文引用的文献

1
Inhibiting mitochondrial Na+/Ca2+ exchange prevents sudden death in a Guinea pig model of heart failure.
Circ Res. 2014 Jun 20;115(1):44-54. doi: 10.1161/CIRCRESAHA.115.303062. Epub 2014 Apr 29.
2
Effects of regional mitochondrial depolarization on electrical propagation: implications for arrhythmogenesis.
Circ Arrhythm Electrophysiol. 2014 Feb;7(1):143-51. doi: 10.1161/CIRCEP.113.000600. Epub 2014 Jan 1.
3
STED super-resolution microscopy reveals an array of MINOS clusters along human mitochondria.
Proc Natl Acad Sci U S A. 2013 May 28;110(22):8936-41. doi: 10.1073/pnas.1301820110. Epub 2013 May 15.
4
Mitofusins 1 and 2 are essential for postnatal metabolic remodeling in heart.
Circ Res. 2012 Sep 28;111(8):1012-26. doi: 10.1161/CIRCRESAHA.112.274142. Epub 2012 Aug 17.
5
Cardiac mitochondrial network excitability: insights from computational analysis.
Am J Physiol Heart Circ Physiol. 2012 Jun 1;302(11):H2178-89. doi: 10.1152/ajpheart.01073.2011. Epub 2012 Mar 16.
6
Down-regulation of OPA1 alters mouse mitochondrial morphology, PTP function, and cardiac adaptation to pressure overload.
Cardiovasc Res. 2012 Jun 1;94(3):408-17. doi: 10.1093/cvr/cvs117. Epub 2012 Mar 8.
7
Mitochondrial fusion is essential for organelle function and cardiac homeostasis.
Circ Res. 2011 Dec 9;109(12):1327-31. doi: 10.1161/CIRCRESAHA.111.258723. Epub 2011 Nov 3.
8
Cardiomyocyte deletion of mitofusin-1 leads to mitochondrial fragmentation and improves tolerance to ROS-induced mitochondrial dysfunction and cell death.
Am J Physiol Heart Circ Physiol. 2012 Jan 1;302(1):H167-79. doi: 10.1152/ajpheart.00833.2011. Epub 2011 Oct 28.
10
Biophysical properties and functional consequences of reactive oxygen species (ROS)-induced ROS release in intact myocardium.
J Physiol. 2011 Nov 1;589(Pt 21):5167-79. doi: 10.1113/jphysiol.2011.214239. Epub 2011 Aug 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验