Suppr超能文献

“生物纳米相互作用:新工具、见解与影响”:皇家学会讨论会综述

'Bio-nano interactions: new tools, insights and impacts': summary of the Royal Society discussion meeting.

作者信息

Lynch Iseult, Feitshans Ilise L, Kendall Michaela

机构信息

School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK

Institute for Work and Health, University of Lausanne, Vaud, 1015 Lausanne, Switzerland.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2015 Feb 5;370(1661):20140162. doi: 10.1098/rstb.2014.0162.

Abstract

Bio-nano interactions can be defined as the study of interactions between nanoscale entities and biological systems such as, but not limited to, peptides, proteins, lipids, DNA and other biomolecules, cells and cellular receptors and organisms including humans. Studying bio-nano interactions is particularly useful for understanding engineered materials that have at least one dimension in the nanoscale. Such materials may consist of discrete particles or nanostructured surfaces. Much of biology functions at the nanoscale; therefore, our ability to manipulate materials such that they are taken up at the nanoscale, and engage biological machinery in a designed and purposeful manner, opens new vistas for more efficient diagnostics, therapeutics (treatments) and tissue regeneration, so-called nanomedicine. Additionally, this ability of nanomaterials to interact with and be taken up by cells allows nanomaterials to be used as probes and tools to advance our understanding of cellular functioning. Yet, as a new technology, assessment of the safety of nanomaterials, and the applicability of existing regulatory frameworks for nanomaterials must be investigated in parallel with development of novel applications. The Royal Society meeting 'Bio-nano interactions: new tools, insights and impacts' provided an important platform for open dialogue on the current state of knowledge on these issues, bringing together scientists, industry, regulatory and legal experts to concretize existing discourse in science law and policy. This paper summarizes these discussions and the insights that emerged.

摘要

生物纳米相互作用可定义为对纳米级实体与生物系统之间相互作用的研究,这些生物系统包括但不限于肽、蛋白质、脂质、DNA和其他生物分子、细胞和细胞受体以及包括人类在内的生物体。研究生物纳米相互作用对于理解至少在一个维度上处于纳米级的工程材料特别有用。此类材料可能由离散颗粒或纳米结构表面组成。许多生物学过程在纳米尺度上发挥作用;因此,我们操控材料使其在纳米尺度上被摄取,并以设计好的、有目的的方式与生物机制相互作用的能力,为更高效的诊断、治疗(疗法)和组织再生(即所谓的纳米医学)开辟了新的前景。此外,纳米材料与细胞相互作用并被细胞摄取的这种能力,使得纳米材料能够用作探针和工具,以增进我们对细胞功能的理解。然而,作为一项新技术,在开发新应用的同时,必须并行研究纳米材料安全性的评估以及现有纳米材料监管框架的适用性。皇家学会会议“生物纳米相互作用:新工具、新见解及影响”为就这些问题的现有知识状况进行公开对话提供了一个重要平台,汇聚了科学家、产业界、监管和法律专家,以将科学、法律和政策方面的现有论述具体化。本文总结了这些讨论以及所产生的见解。

相似文献

1
'Bio-nano interactions: new tools, insights and impacts': summary of the Royal Society discussion meeting.
Philos Trans R Soc Lond B Biol Sci. 2015 Feb 5;370(1661):20140162. doi: 10.1098/rstb.2014.0162.
2
Nanosafety: a Perspective on Nano-Bio Interactions.
Small. 2024 Jul;20(28):e2310540. doi: 10.1002/smll.202310540. Epub 2024 Apr 10.
3
Combinatorial Nano-Bio Interfaces.
ACS Nano. 2018 Jun 26;12(6):5078-5084. doi: 10.1021/acsnano.8b03285. Epub 2018 Jun 8.
5
Nanoparticle interface to biology: applications in probing and modulating biological processes.
Crit Rev Biomed Eng. 2013;41(4-5):323-41. doi: 10.1615/critrevbiomedeng.2014010490.
6
Physical and biochemical insights on DNA structures in artificial and living systems.
Acc Chem Res. 2014 Jun 17;47(6):1720-30. doi: 10.1021/ar400324n. Epub 2014 Mar 3.
7
Understanding the immunological interactions of engineered nanomaterials: Role of the bio-corona.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022 Nov;14(6):e1798. doi: 10.1002/wnan.1798.
8
No king without a crown--impact of the nanomaterial-protein corona on nanobiomedicine.
Nanomedicine (Lond). 2015 Feb;10(3):503-19. doi: 10.2217/nnm.14.184.
9
FIB-nanostructured surfaces and investigation of Bio/nonbio interactions at the nanoscale.
IEEE Trans Nanobioscience. 2008 Mar;7(1):1-10. doi: 10.1109/TNB.2008.2000143.
10
Toxicity of engineered nanomaterials mediated by nano-bio-eco interactions.
J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2018 Jan 2;36(1):21-42. doi: 10.1080/10590501.2017.1418793. Epub 2018 Jan 3.

引用本文的文献

1
Adsorption of Glycine on TiO in Water from On-the-fly Free-Energy Calculations and In Situ Electrochemical Impedance Spectroscopy.
Langmuir. 2024 Jun 11;40(23):12009-12016. doi: 10.1021/acs.langmuir.4c00604. Epub 2024 May 21.
2
Special Issue "Bio-Nano Interactions 2.0".
Int J Mol Sci. 2024 Jan 30;25(3):1667. doi: 10.3390/ijms25031667.
3
Understanding the Significance of Sample Preparation in Studies of the Nanoparticle Metabolite Corona.
ACS Meas Sci Au. 2022 Jun 15;2(3):251-260. doi: 10.1021/acsmeasuresciau.2c00003. Epub 2022 Feb 24.
5
Modulating protein amyloid aggregation with nanomaterials.
Environ Sci Nano. 2017 Sep 1;4(9):1772-1783. doi: 10.1039/C7EN00436B. Epub 2017 Jul 28.
6
How should the completeness and quality of curated nanomaterial data be evaluated?
Nanoscale. 2016 May 21;8(19):9919-43. doi: 10.1039/c5nr08944a. Epub 2016 May 4.
7
Long-term monitoring for nanomedicine implants and drugs.
Nat Nanotechnol. 2016 Mar;11(3):206-10. doi: 10.1038/nnano.2015.341.
8
Cell adhesion century: culture breakthrough.
Philos Trans R Soc Lond B Biol Sci. 2015 Feb 5;370(1661):20140025. doi: 10.1098/rstb.2014.0025.

本文引用的文献

1
Investigation of the limits of nanoscale filopodial interactions.
J Tissue Eng. 2014 May 13;5:2041731414536177. doi: 10.1177/2041731414536177. eCollection 2014.
2
Bioengineering tools to elucidate and control the fate of transplanted stem cells.
Biochem Soc Trans. 2014 Jun;42(3):679-87. doi: 10.1042/BST20130276.
3
Fetuin-A and albumin alter cytotoxic effects of calcium phosphate nanoparticles on human vascular smooth muscle cells.
PLoS One. 2014 May 21;9(5):e97565. doi: 10.1371/journal.pone.0097565. eCollection 2014.
5
Extracellular matrix formation in self-assembled minimalistic bioactive hydrogels based on aromatic peptide amphiphiles.
J Tissue Eng. 2014 Apr 15;5:2041731414531593. doi: 10.1177/2041731414531593. eCollection 2014.
6
Bone regeneration performance of surface-treated porous titanium.
Biomaterials. 2014 Aug;35(24):6172-81. doi: 10.1016/j.biomaterials.2014.04.054. Epub 2014 May 6.
7
Secreted biomolecules alter the biological identity and cellular interactions of nanoparticles.
ACS Nano. 2014 Jun 24;8(6):5515-26. doi: 10.1021/nn4061012. Epub 2014 May 14.
8
Biocatalytic self-assembly of supramolecular charge-transfer nanostructures based on n-type semiconductor-appended peptides.
Angew Chem Int Ed Engl. 2014 Jun 2;53(23):5882-7. doi: 10.1002/anie.201311158. Epub 2014 Apr 30.
9
Secondary structure of corona proteins determines the cell surface receptors used by nanoparticles.
J Phys Chem B. 2014 Dec 11;118(49):14017-26. doi: 10.1021/jp502624n. Epub 2014 May 9.
10
Targeting and activation of antigen-specific B-cells by calcium phosphate nanoparticles loaded with protein antigen.
Biomaterials. 2014 Jul;35(23):6098-105. doi: 10.1016/j.biomaterials.2014.04.010. Epub 2014 Apr 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验