Lynch Iseult, Feitshans Ilise L, Kendall Michaela
School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
Institute for Work and Health, University of Lausanne, Vaud, 1015 Lausanne, Switzerland.
Philos Trans R Soc Lond B Biol Sci. 2015 Feb 5;370(1661):20140162. doi: 10.1098/rstb.2014.0162.
Bio-nano interactions can be defined as the study of interactions between nanoscale entities and biological systems such as, but not limited to, peptides, proteins, lipids, DNA and other biomolecules, cells and cellular receptors and organisms including humans. Studying bio-nano interactions is particularly useful for understanding engineered materials that have at least one dimension in the nanoscale. Such materials may consist of discrete particles or nanostructured surfaces. Much of biology functions at the nanoscale; therefore, our ability to manipulate materials such that they are taken up at the nanoscale, and engage biological machinery in a designed and purposeful manner, opens new vistas for more efficient diagnostics, therapeutics (treatments) and tissue regeneration, so-called nanomedicine. Additionally, this ability of nanomaterials to interact with and be taken up by cells allows nanomaterials to be used as probes and tools to advance our understanding of cellular functioning. Yet, as a new technology, assessment of the safety of nanomaterials, and the applicability of existing regulatory frameworks for nanomaterials must be investigated in parallel with development of novel applications. The Royal Society meeting 'Bio-nano interactions: new tools, insights and impacts' provided an important platform for open dialogue on the current state of knowledge on these issues, bringing together scientists, industry, regulatory and legal experts to concretize existing discourse in science law and policy. This paper summarizes these discussions and the insights that emerged.
生物纳米相互作用可定义为对纳米级实体与生物系统之间相互作用的研究,这些生物系统包括但不限于肽、蛋白质、脂质、DNA和其他生物分子、细胞和细胞受体以及包括人类在内的生物体。研究生物纳米相互作用对于理解至少在一个维度上处于纳米级的工程材料特别有用。此类材料可能由离散颗粒或纳米结构表面组成。许多生物学过程在纳米尺度上发挥作用;因此,我们操控材料使其在纳米尺度上被摄取,并以设计好的、有目的的方式与生物机制相互作用的能力,为更高效的诊断、治疗(疗法)和组织再生(即所谓的纳米医学)开辟了新的前景。此外,纳米材料与细胞相互作用并被细胞摄取的这种能力,使得纳米材料能够用作探针和工具,以增进我们对细胞功能的理解。然而,作为一项新技术,在开发新应用的同时,必须并行研究纳米材料安全性的评估以及现有纳米材料监管框架的适用性。皇家学会会议“生物纳米相互作用:新工具、新见解及影响”为就这些问题的现有知识状况进行公开对话提供了一个重要平台,汇聚了科学家、产业界、监管和法律专家,以将科学、法律和政策方面的现有论述具体化。本文总结了这些讨论以及所产生的见解。