Suppr超能文献

人工和活体系中 DNA 结构的物理和生化见解。

Physical and biochemical insights on DNA structures in artificial and living systems.

机构信息

Division of Physical Biology & Bioimaging Center, Shanghai Sychrotron Radiation Facility (SSRF), CAS Key Laboratory of Microscale Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China.

出版信息

Acc Chem Res. 2014 Jun 17;47(6):1720-30. doi: 10.1021/ar400324n. Epub 2014 Mar 3.

Abstract

CONSPECTUS

Highly specific DNA base-pairing is the basis for both fulfilling its genetic role and constructing novel nanostructures and hybrid conjugates with inorganic nanomaterials (NMs). There exist many remarkable differences in the physical properties of single-stranded (ss) and double-stranded (ds) DNA, which play important roles in regulation of biological processes in nature. Rapid advances in nanoscience and nanotechnology pose new questions on how DNA and DNA structures interact with inorganic nanomaterials or cells and animals, which should be important for their biological and biomedical applications. In this Account, we intend to provide an overview on many facets of DNA and DNA structures in artificial and living systems, with the focus on their properties and functions at the interfaces of inorganic nanomaterials and biological systems. ssDNA, dsDNA, and DNA nanostructures interact with NMs in different ways. In particular, gold nanoparticles and graphene oxide exhibit strikingly different affinity toward ssDNA and dsDNA. Such binding differences can be coupled with optical properties of NMs. For example, DNA hybridization can effectively modulate the plasmonic and catalytic properties of gold nanoparticles. By exploitation of these interactions, there have been many ways for sensitive transduction of biomolecular recognition for various sensing applications. Alternatively, modulation of the properties of DNA and DNA structures with NMs has led to new tools for genetic analysis including genotyping and haplotyping. Self-assembled DNA nanostructures have emerged as a new type of NMs with pure biomolecules. These nanostructures can be designed in one, two, or three dimensions with various sizes, shapes, and geometries. They also have characteristics of uniform size, precise addressability, excellent water solubility, and biocompatibility. These nanostructures provide a new toolbox for biophysical studies with unparalleled advantages, for example, NMR-based protein structure determination and single-molecule studies. Also importantly, DNA nanostructures have proven highly useful in various applications including biological detection, bioreactors, and nanomedicine. In particular, DNA nanostructures exhibit high cellular permeability, a property that is not available for ssDNA and dsDNA, which is required for their drug delivery applications. DNA and DNA structures can also form hybrids with inorganic NMs. Notably, DNA anchored at the interface of inorganic NMs behaves differently from that at the macroscopic interface. Several types of DNA-NM conjugates have exerted beneficial effects for bioassays and in vitro translation of proteins. Even more interestingly, hybrid nanoconjugates demonstrate distinct properties under the context of biological systems such as cultured cells or animal models. These unprecedented properties not only arouse great interest in studying such interfaces but also open new opportunities for numerous applications in artificial and living systems.

摘要

概述

高度特异性的 DNA 碱基配对是其发挥遗传作用和构建新型纳米结构及与无机纳米材料(NMs)的杂化结合物的基础。单链(ss)和双链(ds)DNA 的物理性质存在许多显著差异,这些差异在自然界的生物过程调节中发挥着重要作用。纳米科学和纳米技术的快速发展提出了新的问题,即 DNA 和 DNA 结构如何与无机纳米材料或细胞和动物相互作用,这对于它们的生物和生物医学应用应该很重要。在本综述中,我们旨在概述人工和活系统中 DNA 和 DNA 结构的多个方面,重点是它们在无机纳米材料和生物系统界面处的性质和功能。ssDNA、dsDNA 和 DNA 纳米结构以不同的方式与 NM 相互作用。特别是,金纳米粒子和氧化石墨烯对 ssDNA 和 dsDNA 表现出明显不同的亲和力。这种结合差异可以与 NM 的光学性质相关联。例如,DNA 杂交可以有效地调节金纳米粒子的等离子体和催化性质。通过利用这些相互作用,已经有许多方法可以实现对各种传感应用的生物分子识别的灵敏转导。或者,通过 NM 来调节 DNA 和 DNA 结构的性质,为包括基因分型和单体型分析在内的遗传分析提供了新工具。自组装 DNA 纳米结构已成为具有纯生物分子的新型 NM 类型。这些纳米结构可以在一维、二维或三维中以各种尺寸、形状和几何形状进行设计。它们还具有尺寸均匀、精确寻址、良好水溶性和生物相容性的特点。这些纳米结构为具有无与伦比优势的生物物理研究提供了一个新的工具箱,例如基于 NMR 的蛋白质结构测定和单分子研究。同样重要的是,DNA 纳米结构在包括生物检测、生物反应器和纳米医学在内的各种应用中已被证明非常有用。特别是,DNA 纳米结构表现出高细胞通透性,这是 ssDNA 和 dsDNA 所不具备的特性,这对于它们的药物输送应用是必需的。DNA 和 DNA 结构也可以与无机 NM 形成杂化物。值得注意的是,锚定在无机 NM 界面上的 DNA 与在宏观界面上的 DNA 行为不同。几种类型的 DNA-NM 缀合物已对生物测定和体外蛋白质翻译产生了有益的影响。更有趣的是,杂化纳米缀合物在培养细胞或动物模型等生物系统中表现出不同的性质。这些前所未有的性质不仅引起了人们对这些界面的研究兴趣,也为人工和活系统中的许多应用开辟了新的机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验