Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, China.
Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; J1 Biotech, Co. Ltd., Wuhan 430075, China.
Metab Eng. 2015 Mar;28:82-90. doi: 10.1016/j.ymben.2014.12.004. Epub 2014 Dec 20.
Alkanes and alkenes are ideal biofuels, due to their high energy content and ability to be safely transported. To date, fatty acid-derived pathways for alkane and alkene bioproduction have been thoroughly explored. In this study, we engineered the pathway of the iterative Type I polyketide synthase (PKS) SgcE with the cognate thioesterase (TE) SgcE10 in Escherichia coli, with the goal of overproducing pentadecaheptaene (PDH) followed by its hydrogenation to pentadecane (PD). Based on initial in vitro titration assays, we learned that PDH production is strongly dependent on the SgcE10:SgcE ratio. Thus, we engineered a high-yield E. coli strain by fine-tuning SgcE10 expression via synthetic promoters. We analyzed engineered E. coli strains using a modified multiple reactions monitoring mass spectrometry (MRM-MS)-based targeted proteomic approach, using a chimeric SgcE10 and SgcE fusion construct to gain insight into expression levels of the two proteins. Lastly, through fed-batch fermentation followed by flow chemical hydrogenation, we obtained a PD yield of nearly 140mg/L in single-alkane form. Thus, we not only employed a metabolic engineering approach to the iterative polyketide pathway, we highlighted the potential of PKS shunt products to play a role in the production of single-form and high-value chemicals.
烷烃和烯烃是理想的生物燃料,因为它们具有高能量含量和能够安全运输的特点。迄今为止,脂肪酸衍生的烷烃和烯烃生物生产途径已经得到了深入的探索。在这项研究中,我们在大肠杆菌中对迭代型 I 聚酮合酶(PKS)SgcE 及其同源硫酯酶(TE)SgcE10 的途径进行了工程改造,目的是过量生产十五碳七烯(PDH),然后将其氢化生成十五烷(PD)。基于初步的体外滴定测定,我们了解到 PDH 的产生强烈依赖于 SgcE10:SgcE 的比例。因此,我们通过使用合成启动子精细调整 SgcE10 的表达,构建了一个高产量的大肠杆菌菌株。我们使用改良的基于多重反应监测质谱(MRM-MS)的靶向蛋白质组学方法分析了工程大肠杆菌菌株,使用嵌合 SgcE10 和 SgcE 融合构建体来深入了解两种蛋白质的表达水平。最后,通过分批补料发酵和流动化学氢化,我们在单一烷烃形式下获得了近 140mg/L 的 PD 产率。因此,我们不仅采用代谢工程方法对迭代聚酮途径进行了改造,还强调了 PKS 支路产物在单一形式和高价值化学品生产中的潜在作用。