Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, 35043, Marburg, Germany.
Equipment Center for Mass Spectrometry and Elemental Analysis, Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043, Marburg, Germany.
Angew Chem Int Ed Engl. 2021 Jul 19;60(30):16420-16425. doi: 10.1002/anie.202102333. Epub 2021 Jun 3.
A long-term goal in realizing a sustainable biocatalysis and organic synthesis is the direct use of the greenhouse gas CO as feedstock for the production of bulk and fine chemicals, such as pharmaceuticals, fragrances and food additives. Here we developed a modular in vitro platform for the continuous conversion of CO into complex multi-carbon compounds, such as monoterpenes (C ), sesquiterpenes (C ) and polyketides. Combining natural and synthetic metabolic pathway modules, we established a route from CO into the key intermediates acetyl- and malonyl-CoA, which can be subsequently diversified through the action of different terpene and polyketide synthases. Our proof-of-principle study demonstrates the simultaneous operation of different metabolic modules comprising of up to 29 enzymes in one pot, which paves the way for developing and optimizing synthesis routes for the generation of complex CO -based chemicals in the future.
实现可持续生物催化和有机合成的长期目标是直接将温室气体 CO 用作生产大宗和精细化学品(如药物、香料和食品添加剂)的原料。在这里,我们开发了一个模块化的体外平台,用于将 CO 连续转化为复杂的多碳化合物,如单萜(C )、倍半萜(C )和聚酮化合物。通过结合天然和合成代谢途径模块,我们建立了一条从 CO 到关键中间体乙酰辅酶 A 和丙二酰辅酶 A 的途径,这些中间体可以通过不同的萜烯和聚酮合酶的作用进一步多样化。我们的原理验证研究表明,多达 29 种酶的不同代谢模块可以同时在一个容器中运行,这为未来开发和优化基于 CO 的复杂化学品的合成路线铺平了道路。