Farouz Yohan, Chen Yong, Terzic André, Menasché Philippe
Department of Chemistry, Paris Sciences et Lettres, Ecole Normale Supérieure de Paris, CNRS UMR, Paris, France; Sorbonne Paris Cité, Paris Descartes University, Paris, France; INSERM U970, Paris, France.
Stem Cells. 2015 Apr;33(4):1021-35. doi: 10.1002/stem.1929.
Tissue engineering aims at recapitulating permissive conditions that enable cells to collaborate and form functional tissues. Applications range from human tissue modeling for diagnostic purposes to therapeutic solutions in regenerative medicine and surgery. Across this spectrum, human stem cells are the active ingredient, expandable virtually indefinitely and with the propensity to generate new tissue. Engaging lineage-specific differentiation requires a precise concerto of key spatial and temporal factors, such as soluble molecules and growth factors, but also physical and mechanical stimuli. These stimuli compete to modulate distinct developmental signaling pathways and ultimately affect the differentiation efficiency. The heart is a chemo-mechano-electrical biological system that behaves as both a sensor and an actuator. It can transduce electrical inputs to generate mechanical contraction and electrical wave propagation. Such a complex organ arises from multipart developmental events that interact with one another to self-regulate. Here, we overview the main events of heart development and the role of mechanical forces in modifying the microenvironment of the progenitor cells. We analyze the cascades regulating cardiac gene activation to illustrate how mechanotransduction is already involved in the most popular protocols for stem cell differentiation (SCD) into cardiomyocytes. We then review how forces are transmitted to embryonic stem cells by cell-substrate or cell-cell communications, and how biomaterials can be designed to mimic these interactions and help reproduce key features of the developmental milieu. Putting this back in a clinical perspective, many challenges need to be overcome before biomaterials-based SCD protocols can be scaled up and marketed.
组织工程旨在重现允许细胞协作并形成功能组织的条件。其应用范围从用于诊断目的的人体组织建模到再生医学和手术中的治疗解决方案。在这个范围内,人类干细胞是活性成分,几乎可以无限扩增,并具有生成新组织的倾向。诱导细胞谱系特异性分化需要关键的空间和时间因素精确协同作用,例如可溶性分子和生长因子,以及物理和机械刺激。这些刺激相互竞争以调节不同的发育信号通路,并最终影响分化效率。心脏是一个化学 - 机械 - 电生物学系统,既是传感器又是执行器。它可以将电输入转化为机械收缩和电波传播。这样一个复杂的器官源于相互作用以进行自我调节的多部分发育事件。在这里,我们概述心脏发育的主要事件以及机械力在改变祖细胞微环境中的作用。我们分析调节心脏基因激活的级联反应,以说明机械转导如何已经参与到将干细胞分化(SCD)为心肌细胞的最常用方案中。然后我们回顾力是如何通过细胞 - 基质或细胞 - 细胞通讯传递给胚胎干细胞的,以及如何设计生物材料来模拟这些相互作用并帮助重现发育环境的关键特征。从临床角度来看,在基于生物材料的SCD方案能够扩大规模并推向市场之前,还有许多挑战需要克服。