Western Geographic Science Center, U.S. Geological Survey , USA.
Bren School of Environmental Science and Management, University of California Santa Barbara , USA.
PeerJ. 2014 Dec 11;2:e690. doi: 10.7717/peerj.690. eCollection 2014.
Quantitative methods of spatial conservation prioritization have traditionally been applied to issues in conservation biology and reserve design, though their use in other types of natural resource management is growing. The utility maximization problem is one form of a covering problem where multiple criteria can represent the expected social benefits of conservation action. This approach allows flexibility with a problem formulation that is more general than typical reserve design problems, though the solution methods are very similar. However, few studies have addressed optimization in utility maximization problems for conservation planning, and the effect of solution procedure is largely unquantified. Therefore, this study mapped five criteria describing elements of multifunctional agriculture to determine a hypothetical conservation resource allocation plan for agricultural land conservation in the Central Valley of CA, USA. We compared solution procedures within the utility maximization framework to determine the difference between an open source integer programming approach and a greedy heuristic, and find gains from optimization of up to 12%. We also model land availability for conservation action as a stochastic process and determine the decline in total utility compared to the globally optimal set using both solution algorithms. Our results are comparable to other studies illustrating the benefits of optimization for different conservation planning problems, and highlight the importance of maximizing the effectiveness of limited funding for conservation and natural resource management.
空间保护优先化的定量方法传统上被应用于保护生物学和保护区设计问题,尽管它们在其他类型的自然资源管理中的应用正在增加。效用最大化问题是覆盖问题的一种形式,其中多个标准可以代表保护行动的预期社会效益。这种方法允许更灵活地制定问题,其形式比典型的保护区设计问题更一般,尽管解决方案方法非常相似。然而,很少有研究解决保护规划中效用最大化问题的优化问题,并且解决方案过程的效果在很大程度上没有被量化。因此,本研究将描述多功能农业要素的五个标准映射出来,以确定美国加利福尼亚州中央谷农业土地保护的假想保护资源分配计划。我们在效用最大化框架内比较了解决方案过程,以确定开源整数规划方法和贪婪启发式方法之间的差异,并发现优化带来的收益高达 12%。我们还将保护行动的土地可用性建模为随机过程,并使用两种解决方案算法确定与全局最优集相比总效用的下降情况。我们的结果与其他研究相似,说明了针对不同保护规划问题进行优化的好处,并强调了为保护和自然资源管理有限资金的有效性最大化的重要性。