Gibbs Holly C, Dodson Colin R, Bai Yuqiang, Lekven Arne C, Yeh Alvin T
Texas A&M University, Department of Biomedical Engineering, College Station, Texas 77843-3120, United States.
Texas A&M University, Department of Biology, College Station, Texas 77843-3258, United States.
J Biomed Opt. 2014 Dec;19(12):126016. doi: 10.1117/1.JBO.19.12.126016.
During embryogenesis, presumptive brain compartments are patterned by dynamic networks of gene expression. The spatiotemporal dynamics of these networks, however, have not been characterized with sufficient resolution for us to understand the regulatory logic resulting in morphogenetic cellular behaviors that give the brain its shape. We have developed a new, integrated approach using ultrashort pulse microscopy [a high-resolution, two-photon fluorescence (2PF)-optical coherence microscopy (OCM) platform using 10-fs pulses] and image registration to study brain patterning and morphogenesis in zebrafish embryos. As a demonstration, we used time-lapse 2PF to capture midbrain-hindbrain boundary morphogenesis and a wnt1 lineage map from embryos during brain segmentation. We then performed in situ hybridization to deposit NBT/BCIP, where wnt1 remained actively expressed, and reimaged the embryos with combined 2PF-OCM. When we merged these datasets using morphological landmark registration, we found that the mechanism of boundary formation differs along the dorsoventral axis. Dorsally, boundary sharpening is dominated by changes in gene expression, while ventrally, sharpening may be accomplished by lineage sorting. We conclude that the integrated visualization of lineage reporter and gene expression domains simultaneously with brain morphology will be useful for understanding how changes in gene expression give rise to proper brain compartmentalization and structure.
在胚胎发育过程中,假定的脑区是由动态的基因表达网络形成的。然而,这些网络的时空动态尚未得到足够高分辨率的表征,以使我们理解导致形成赋予大脑形状的形态发生细胞行为的调控逻辑。我们开发了一种新的综合方法,利用超短脉冲显微镜[一种使用10飞秒脉冲的高分辨率双光子荧光(2PF)-光学相干显微镜(OCM)平台]和图像配准来研究斑马鱼胚胎中的脑区形成和形态发生。作为一个示范,我们使用延时2PF来捕捉脑部分割期间胚胎的中脑-后脑边界形态发生和wnt1谱系图。然后,我们进行原位杂交以沉积NBT/BCIP,其中wnt1仍在活跃表达,并使用组合的2PF-OCM对胚胎进行重新成像。当我们使用形态学地标配准合并这些数据集时,我们发现边界形成的机制沿背腹轴有所不同。在背侧,边界锐化主要由基因表达的变化主导,而在腹侧,锐化可能通过谱系分选来完成。我们得出结论,将谱系报告基因和基因表达域与脑形态同时进行综合可视化,将有助于理解基因表达的变化如何导致正确的脑区划分和结构形成。