Suppr超能文献

一种使用18F-FMISO-PET的胶质母细胞瘤中缺氧调节辐射抗性的患者特异性计算模型。

A patient-specific computational model of hypoxia-modulated radiation resistance in glioblastoma using 18F-FMISO-PET.

作者信息

Rockne Russell C, Trister Andrew D, Jacobs Joshua, Hawkins-Daarud Andrea J, Neal Maxwell L, Hendrickson Kristi, Mrugala Maciej M, Rockhill Jason K, Kinahan Paul, Krohn Kenneth A, Swanson Kristin R

机构信息

Department of Neurological Surgery, Northwestern University and Feinberg School of Medicine, 676 N Saint Clair Street, Suite 1300, Chicago, IL 60611, USA Northwestern Brain Tumor Institute, Northwestern University, 675 N Saint Clair Street, Suite 2100, Chicago, IL 60611, USA,

Department of Radiation Oncology, University of Washington, School of Medicine, 1959 NE Pacific Street, Seattle, WA 98195, USA.

出版信息

J R Soc Interface. 2015 Feb 6;12(103). doi: 10.1098/rsif.2014.1174.

Abstract

Glioblastoma multiforme (GBM) is a highly invasive primary brain tumour that has poor prognosis despite aggressive treatment. A hallmark of these tumours is diffuse invasion into the surrounding brain, necessitating a multi-modal treatment approach, including surgery, radiation and chemotherapy. We have previously demonstrated the ability of our model to predict radiographic response immediately following radiation therapy in individual GBM patients using a simplified geometry of the brain and theoretical radiation dose. Using only two pre-treatment magnetic resonance imaging scans, we calculate net rates of proliferation and invasion as well as radiation sensitivity for a patient's disease. Here, we present the application of our clinically targeted modelling approach to a single glioblastoma patient as a demonstration of our method. We apply our model in the full three-dimensional architecture of the brain to quantify the effects of regional resistance to radiation owing to hypoxia in vivo determined by [(18)F]-fluoromisonidazole positron emission tomography (FMISO-PET) and the patient-specific three-dimensional radiation treatment plan. Incorporation of hypoxia into our model with FMISO-PET increases the model-data agreement by an order of magnitude. This improvement was robust to our definition of hypoxia or the degree of radiation resistance quantified with the FMISO-PET image and our computational model, respectively. This work demonstrates a useful application of patient-specific modelling in personalized medicine and how mathematical modelling has the potential to unify multi-modality imaging and radiation treatment planning.

摘要

多形性胶质母细胞瘤(GBM)是一种具有高度侵袭性的原发性脑肿瘤,尽管进行了积极治疗,但其预后仍然很差。这些肿瘤的一个标志是向周围脑组织的弥漫性浸润,这就需要采取多模式治疗方法,包括手术、放疗和化疗。我们之前已经证明,利用简化的脑部几何结构和理论辐射剂量,我们的模型能够预测个体GBM患者放疗后立即出现的影像学反应。仅使用两次治疗前的磁共振成像扫描,我们就能计算出患者疾病的增殖和侵袭净速率以及辐射敏感性。在此,我们展示我们的临床靶向建模方法在一名胶质母细胞瘤患者中的应用,以证明我们的方法。我们将模型应用于大脑的完整三维结构,以量化由[18F] - 氟米索硝唑正电子发射断层扫描(FMISO - PET)确定的体内缺氧以及患者特异性三维放射治疗计划所导致的区域辐射抗性的影响。将缺氧情况通过FMISO - PET纳入我们的模型,可使模型与数据的一致性提高一个数量级。这种改进对于我们对缺氧的定义或分别用FMISO - PET图像和我们的计算模型量化的辐射抗性程度而言是稳健的。这项工作展示了患者特异性建模在个性化医疗中的有用应用,以及数学建模如何有潜力统一多模态成像和放射治疗计划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c18e/4305419/e5df894ff2ab/rsif20141174-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验