Noyes Frank R, Jetter Andrew W, Grood Edward S, Harms Samuel P, Gardner Eric J, Levy Martin S
Cincinnati Sports Medicine and Orthopedic Center, Cincinnati, Ohio, USA The Noyes Knee Institute, Cincinnati, Ohio, USA
Cincinnati Sports Medicine and Orthopedic Center, Cincinnati, Ohio, USA.
Am J Sports Med. 2015 Mar;43(3):683-92. doi: 10.1177/0363546514561746. Epub 2014 Dec 24.
Rotational knee stability provided by the anterior cruciate ligament (ACL) in the pivot-shift phenomena involves analysis of more complex robotic testing profiles and resulting tibiofemoral compartment kinematics and subluxations.
Using anterior-posterior tibial forces along with internal and valgus tibial moments will produce a major anterior subluxation of both tibiofemoral compartments not obtained with internal and valgus moments alone. Increasing the internal torque in pivot-shift testing will constrain the anterior subluxations of the medial and central tibial compartments.
Controlled laboratory study.
A 6 degrees of freedom robotic knee testing system applied anterior translation and rotational loading profiles in 10 cadaveric knees before and after ACL sectioning. Changes in knee motion limits were measured, and medial and lateral tibiofemoral compartment translations were determined by digitization of tibial plateau anatomic landmarks. Loading profiles simulated Lachman and tibial rotation tests as well as typical pivot-shift loading profiles from prior in vitro and in vivo studies.
After ACL sectioning, anterior tibial translation increased by 10.3 ± 3.7 mm at 25° of flexion (P < .001). Internal tibial rotation increased by 1.6° ± 1.1° (5 N·m; P > .05). In pivot-shift tests (anterior translation, 100 N; internal rotation, 1 N·m; valgus, 7 N·m), the tibial rotation center shifted outside the medial tibial margin, with abnormal anterior translation of both compartments (medial, 12.9 ± 3.9 mm; lateral, 7.5 ± 3.7 mm; P < .001), with internal rotation decreasing by 4.1° ± 3.5° (P < .05). A greater internal rotation torque (5 vs 1 N·m) in the pivot-shift test constrained and limited anterior tibial translation and prevented anterior subluxation of the medial compartment (P < .001).
Sectioning of the ACL produces major increases in tibiofemoral compartment translations and only small increases in internal tibial rotation. The simulation of the pivot shift requires a combined loading profile of anterior translation, internal rotation, and valgus, which produces the greatest anterior subluxation of the medial and lateral tibiofemoral compartments. This testing profile is recommended to be included along with other loading profiles for future ACL studies. The application of a high internal rotation torque in cadaveric pivot-shift tests constrains anterior tibial subluxation of the medial and center compartments and appears less ideal for analysis of ACL function and graft reconstructions.
Surgeons should be cautious in interpreting conclusions on ACL function and graft reconstructions without knowing the resulting tibiofemoral subluxations or loading conditions that may limit maximum anterior tibial femoral subluxations.
前交叉韧带(ACL)在轴移现象中提供的膝关节旋转稳定性涉及对更复杂的机器人测试曲线以及由此产生的胫股关节运动学和半脱位的分析。
使用前后向胫骨力以及内翻和外翻胫骨力矩将产生两个胫股关节的主要前向半脱位,而仅使用内翻和外翻力矩则无法获得这种情况。在轴移测试中增加内扭矩将限制内侧和中央胫股关节的前向半脱位。
对照实验室研究。
一个6自由度机器人膝关节测试系统在10个尸体膝关节ACL切断前后施加前向平移和旋转加载曲线。测量膝关节运动极限的变化,并通过胫骨平台解剖标志的数字化确定内侧和外侧胫股关节的平移。加载曲线模拟了拉赫曼试验和胫骨旋转试验以及先前体外和体内研究中的典型轴移加载曲线。
ACL切断后,在25°屈曲时,胫骨前向平移增加了10.3±3.7mm(P<.001)。胫骨内旋增加了1.6°±1.1°(5N·m;P>.05)。在轴移测试中(前向平移100N;内旋1N·m;外翻7N·m),胫骨旋转中心移至内侧胫骨边缘之外,两个关节均出现异常前向平移(内侧12.9±3.9mm;外侧7.5±3.7mm;P<.001),内旋减少了4.1°±3.5°(P<.05)。轴移测试中更大的内旋扭矩(5比1N·m)限制并减少了胫骨前向平移,并防止了内侧关节的前向半脱位(P<.001)。
ACL切断会导致胫股关节平移大幅增加,而胫骨内旋仅小幅增加。轴移的模拟需要前向平移、内旋和外翻的组合加载曲线,这会导致内侧和外侧胫股关节最大程度的前向半脱位。建议在未来的ACL研究中将此测试曲线与其他加载曲线一起纳入。在尸体轴移测试中应用高内旋扭矩会限制内侧和中央关节的胫骨前向半脱位,对于分析ACL功能和移植物重建似乎不太理想。
在不了解可能限制最大胫股前向半脱位的胫股半脱位或加载条件的情况下,外科医生在解释关于ACL功能和移植物重建的结论时应谨慎。