Ashour Joseph, Schmidt Florian I, Hanke Leo, Cragnolini Juanjo, Cavallari Marco, Altenburg Arwen, Brewer Rebeccah, Ingram Jessica, Shoemaker Charles, Ploegh Hidde L
Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA.
Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts, USA.
J Virol. 2015 Mar;89(5):2792-800. doi: 10.1128/JVI.02693-14. Epub 2014 Dec 24.
Perturbation of protein-protein interactions relies mostly on genetic approaches or on chemical inhibition. Small RNA viruses, such as influenza A virus, do not easily lend themselves to the former approach, while chemical inhibition requires that the target protein be druggable. A lack of tools thus constrains the functional analysis of influenza virus-encoded proteins. We generated a panel of camelid-derived single-domain antibody fragments (VHHs) against influenza virus nucleoprotein (NP), a viral protein essential for nuclear trafficking and packaging of the influenza virus genome. We show that these VHHs can target NP in living cells and perturb NP's function during infection. Cytosolic expression of NP-specific VHHs (αNP-VHHs) disrupts virus replication at an early stage of the life cycle. Based on their specificity, these VHHs fall into two distinct groups. Both prevent nuclear import of the viral ribonucleoprotein (vRNP) complex without disrupting nuclear import of NP alone. Different stages of the virus life cycle thus rely on distinct nuclear localization motifs of NP. Their molecular characterization may afford new means of intervention in the virus life cycle.
Many proteins encoded by RNA viruses are refractory to manipulation due to their essential role in replication. Thus, studying their function and determining how to disrupt said function through pharmaceutical intervention are difficult. We present a novel method based on single-domain-antibody technology that permits specific targeting and disruption of an essential influenza virus protein in the absence of genetic manipulation of influenza virus itself. Characterization of such interactions may help identify new targets for pharmaceutical intervention. This approach can be extended to study proteins encoded by other viral pathogens.
蛋白质-蛋白质相互作用的扰动大多依赖于基因方法或化学抑制。小型RNA病毒,如甲型流感病毒,不容易采用前一种方法,而化学抑制要求靶蛋白是可成药的。因此,缺乏工具限制了对流感病毒编码蛋白的功能分析。我们生成了一组针对流感病毒核蛋白(NP)的骆驼科动物源单域抗体片段(VHH),NP是流感病毒基因组核运输和包装所必需的一种病毒蛋白。我们表明,这些VHH可以在活细胞中靶向NP,并在感染过程中干扰NP的功能。NP特异性VHH(αNP-VHH)的胞质表达在生命周期的早期阶段破坏病毒复制。基于它们的特异性,这些VHH分为两个不同的组。两者都能阻止病毒核糖核蛋白(vRNP)复合物的核输入,而不会单独破坏NP的核输入。因此,病毒生命周期的不同阶段依赖于NP不同的核定位基序。它们的分子特征可能为干预病毒生命周期提供新的手段。
RNA病毒编码的许多蛋白质由于其在复制中的关键作用而难以操纵。因此,研究它们的功能并确定如何通过药物干预破坏所述功能是困难的。我们提出了一种基于单域抗体技术的新方法,该方法允许在不直接对流感病毒进行基因操作的情况下,特异性靶向和破坏一种必需的流感病毒蛋白。对这种相互作用的表征可能有助于确定药物干预的新靶点。这种方法可以扩展到研究其他病毒病原体编码的蛋白质。