Suppr超能文献

含明胶水凝胶支架的无标记成像。

Label-free imaging of gelatin-containing hydrogel scaffolds.

作者信息

Liang Yajie, Bar-Shir Amnon, Song Xiaolei, Gilad Assaf A, Walczak Piotr, Bulte Jeff W M

机构信息

Russell H. Morgan Dept. of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.

Russell H. Morgan Dept. of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Dept. of Chemical & Biomolecular Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Dept. of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Dept. of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.

出版信息

Biomaterials. 2015 Feb;42:144-50. doi: 10.1016/j.biomaterials.2014.11.050. Epub 2014 Dec 16.

Abstract

Composite hyaluronic acid (HA) hydrogels containing gelatin are used in regenerative medicine as tissue-mimicking scaffolds for improving stem cell survival. Once implanted, it is assumed that these biomaterials disintegrate over time, but at present there is no non-invasive imaging technique available with which such degradation can be directly monitored in vivo. We show here the potential of chemical exchange saturation transfer magnetic resonance imaging (CEST MRI) as a label-free non-invasive imaging technique to monitor dynamic changes in scaffold composition in vivo. The CEST properties of the three individual hydrogel components (HA, GelinS, and polyethylene glycol diacrylate) were first measured in vitro. The complete hydrogel was then injected into the brain of immunodeficient rag2(-/-) mice and CEST MR images were obtained at day 1 and 7 post-transplantation. In vitro, GelinS gave the strongest CEST signal at 3.6 ppm offset from the water peak, originating from the amide protons present in gelatin. In vivo, a significant decrease in CEST signal was observed at 1 week post-implantation. These results were consistent with the biodegradation of the GelinS component, as validated by fluorescent microscopy of implanted hydrogels containing Alexa Fluor 488-labeled GelinS. Our label-free imaging approach should be useful for further development of hydrogel formulations with improved composition and stability.

摘要

含有明胶的复合透明质酸(HA)水凝胶在再生医学中用作模仿组织的支架,以提高干细胞存活率。一旦植入,人们认为这些生物材料会随着时间推移而分解,但目前尚无可用的非侵入性成像技术来在体内直接监测这种降解情况。我们在此展示了化学交换饱和转移磁共振成像(CEST MRI)作为一种无标记非侵入性成像技术在监测体内支架成分动态变化方面的潜力。首先在体外测量了三种单独水凝胶成分(HA、GelinS和聚乙二醇二丙烯酸酯)的CEST特性。然后将完整的水凝胶注射到免疫缺陷的rag2(-/-)小鼠大脑中,并在移植后第1天和第7天获得CEST MR图像。在体外,GelinS在相对于水峰偏移3.6 ppm处给出最强的CEST信号,该信号源自明胶中存在的酰胺质子。在体内,植入后1周观察到CEST信号显著降低。这些结果与GelinS成分的生物降解一致,含有Alexa Fluor 488标记的GelinS的植入水凝胶的荧光显微镜检查验证了这一点。我们的无标记成像方法对于进一步开发具有改进成分和稳定性的水凝胶制剂应该是有用的。

相似文献

1
Label-free imaging of gelatin-containing hydrogel scaffolds.
Biomaterials. 2015 Feb;42:144-50. doi: 10.1016/j.biomaterials.2014.11.050. Epub 2014 Dec 16.
2
In Vivo Imaging of Implanted Hyaluronic Acid Hydrogel Biodegradation.
Methods Mol Biol. 2022;2394:743-765. doi: 10.1007/978-1-0716-1811-0_39.
3
Imaging of Composite Hydrogel Scaffold Degradation Using CEST MRI and Two-Color NIR Imaging.
Adv Funct Mater. 2019 Sep 5;29(36). doi: 10.1002/adfm.201903753. Epub 2019 Jul 8.
5
Protein composition alters in vivo resorption of PEG-based hydrogels as monitored by contrast-enhanced MRI.
Biomaterials. 2015 Feb;42:1-10. doi: 10.1016/j.biomaterials.2014.11.015. Epub 2014 Dec 9.
6
Imaging of Allografted Glial-Restricted Progenitor Cell Survival and Hydrogel Scaffold Biodegradation.
ACS Appl Mater Interfaces. 2021 May 26;13(20):23423-23437. doi: 10.1021/acsami.1c03415. Epub 2021 May 12.
8
Visualization of Injectable Hydrogels Using Chemical Exchange Saturation Transfer MRI.
ACS Biomater Sci Eng. 2015 Apr 13;1(4):227-237. doi: 10.1021/ab500097d. Epub 2015 Mar 25.
9
Fabrication of large perfusable macroporous cell-laden hydrogel scaffolds using microbial transglutaminase.
Acta Biomater. 2014 Feb;10(2):912-20. doi: 10.1016/j.actbio.2013.11.009. Epub 2013 Nov 18.

引用本文的文献

3
Emerging scaffold- and cellular-based strategies for brain tissue regeneration and imaging.
In Vitro Model. 2022 Mar 17;1(2):129-150. doi: 10.1007/s44164-022-00013-0. eCollection 2022 Apr.
6
Gold-Enhanced Brachytherapy by a Nanoparticle-Releasing Hydrogel and 3D-Printed Subcutaneous Radioactive Implant Approach.
Adv Healthc Mater. 2023 Sep;12(23):e2300305. doi: 10.1002/adhm.202300305. Epub 2023 May 14.
8
BDNF-overexpressing MSCs delivered by hydrogel in acute ischemic stroke treatment.
Ann Transl Med. 2022 Dec;10(24):1393. doi: 10.21037/atm-22-5921.
9
In vivo tracking of unlabelled mesenchymal stromal cells by mannose-weighted chemical exchange saturation transfer MRI.
Nat Biomed Eng. 2022 May;6(5):658-666. doi: 10.1038/s41551-021-00822-w. Epub 2022 Feb 7.
10
In Vivo Imaging of Implanted Hyaluronic Acid Hydrogel Biodegradation.
Methods Mol Biol. 2022;2394:743-765. doi: 10.1007/978-1-0716-1811-0_39.

本文引用的文献

1
Magnetization transfer contrast MRI for non-invasive assessment of innate and adaptive immune responses against alginate-encapsulated cells.
Biomaterials. 2014 Sep;35(27):7811-8. doi: 10.1016/j.biomaterials.2014.05.057. Epub 2014 Jun 13.
2
Clearance kinetics of biomaterials affects stem cell retention and therapeutic efficacy.
Biomacromolecules. 2014 Feb 10;15(2):564-73. doi: 10.1021/bm401583b. Epub 2014 Jan 6.
3
Human protamine-1 as an MRI reporter gene based on chemical exchange.
ACS Chem Biol. 2014 Jan 17;9(1):134-8. doi: 10.1021/cb400617q. Epub 2013 Oct 25.
4
Seeing stem cells at work in vivo.
Stem Cell Rev Rep. 2014 Feb;10(1):127-44. doi: 10.1007/s12015-013-9468-x.
5
The survival of engrafted neural stem cells within hyaluronic acid hydrogels.
Biomaterials. 2013 Jul;34(22):5521-9. doi: 10.1016/j.biomaterials.2013.03.095. Epub 2013 Apr 25.
6
MRI-detectable pH nanosensors incorporated into hydrogels for in vivo sensing of transplanted-cell viability.
Nat Mater. 2013 Mar;12(3):268-75. doi: 10.1038/nmat3525. Epub 2013 Jan 27.
7
MRI biosensor for protein kinase A encoded by a single synthetic gene.
Magn Reson Med. 2012 Dec;68(6):1919-23. doi: 10.1002/mrm.24483. Epub 2012 Sep 28.
8
Monitoring enzyme activity using a diamagnetic chemical exchange saturation transfer magnetic resonance imaging contrast agent.
J Am Chem Soc. 2011 Oct 19;133(41):16326-9. doi: 10.1021/ja204701x. Epub 2011 Sep 23.
9
Matrix metalloproteinase inhibitors: a review on bioanalytical methods, pharmacokinetics and metabolism.
Curr Drug Metab. 2011 May;12(4):395-410. doi: 10.2174/138920011795202901.
10
Hyaluronic acid hydrogels for biomedical applications.
Adv Mater. 2011 Mar 25;23(12):H41-56. doi: 10.1002/adma.201003963. Epub 2011 Mar 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验