Suppr超能文献

使用CEST MRI和双色近红外成像对复合水凝胶支架降解进行成像

Imaging of Composite Hydrogel Scaffold Degradation Using CEST MRI and Two-Color NIR Imaging.

作者信息

Zhu Wei, Chu Chengyan, Kuddannaya Shreyas, Yuan Yue, Walczak Piotr, Singh Anirudha, Song Xiaolei, Bulte Jeff W M

机构信息

Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, the Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.

Cellular Imaging Section, Institute for Cell Engineering, the Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.

出版信息

Adv Funct Mater. 2019 Sep 5;29(36). doi: 10.1002/adfm.201903753. Epub 2019 Jul 8.

Abstract

Hydrogel scaffolding of stem cells is a promising strategy to overcome initial cell loss and manipulate cell function post-transplantation. Matrix degradation is a requirement for downstream cell differentiation and functional tissue integration, which determines therapeutic outcome. Therefore, monitoring of hydrogel degradation is essential for scaffolded cell replacement therapies. We show here that chemical exchange saturation transfer magnetic resonance imaging (CEST MRI) can be used as a label-free imaging platform for monitoring the degradation of crosslinked hydrogels containing gelatin (Gel) and hyaluronic acid (HA), of which the stiffness can be fine-tuned by varying the ratio of the Gel:HA. By labeling Gel and HA with two different NIR dyes having distinct emission excitation frequencies, we show here that the HA signal remains stable for 42 days, while the Gel signal gradually decreases to <25% of its initial value at this time point. Both imaging modalities were in excellent agreement for both the time course and relative value of CEST MRI and NIR signals (R=0.94). These findings support the further use of CEST MRI for monitoring biodegradation and optimizing of gelatin-containing hydrogels in a label-free manner.

摘要

干细胞水凝胶支架是一种很有前景的策略,可克服移植初期的细胞损失并在移植后调控细胞功能。基质降解是下游细胞分化和功能性组织整合的必要条件,这决定了治疗效果。因此,监测水凝胶降解对于支架细胞替代疗法至关重要。我们在此表明,化学交换饱和转移磁共振成像(CEST MRI)可作为一种无标记成像平台,用于监测含有明胶(Gel)和透明质酸(HA)的交联水凝胶的降解情况,其中水凝胶的硬度可通过改变Gel:HA的比例进行微调。通过用两种具有不同发射激发频率的不同近红外染料标记Gel和HA,我们在此表明,HA信号在42天内保持稳定,而在该时间点Gel信号逐渐降至其初始值的<25%。CEST MRI和近红外信号的时间进程和相对值在两种成像方式中都具有极好的一致性(R = 0.94)。这些发现支持进一步使用CEST MRI以无标记方式监测生物降解并优化含明胶的水凝胶。

相似文献

1
Imaging of Composite Hydrogel Scaffold Degradation Using CEST MRI and Two-Color NIR Imaging.
Adv Funct Mater. 2019 Sep 5;29(36). doi: 10.1002/adfm.201903753. Epub 2019 Jul 8.
2
In Vivo Imaging of Implanted Hyaluronic Acid Hydrogel Biodegradation.
Methods Mol Biol. 2022;2394:743-765. doi: 10.1007/978-1-0716-1811-0_39.
3
Label-free imaging of gelatin-containing hydrogel scaffolds.
Biomaterials. 2015 Feb;42:144-50. doi: 10.1016/j.biomaterials.2014.11.050. Epub 2014 Dec 16.
4
Imaging of Allografted Glial-Restricted Progenitor Cell Survival and Hydrogel Scaffold Biodegradation.
ACS Appl Mater Interfaces. 2021 May 26;13(20):23423-23437. doi: 10.1021/acsami.1c03415. Epub 2021 May 12.
6
Visualization of Injectable Hydrogels Using Chemical Exchange Saturation Transfer MRI.
ACS Biomater Sci Eng. 2015 Apr 13;1(4):227-237. doi: 10.1021/ab500097d. Epub 2015 Mar 25.
7
Imaging Self-Healing Hydrogels and Chemotherapeutics Using CEST MRI at 3 T.
ACS Appl Bio Mater. 2021 Jul 19;4(7):5605-5616. doi: 10.1021/acsabm.1c00411. Epub 2021 Jun 2.
9
Interplay of Hydrogel Composition and Geometry on Human Mesenchymal Stem Cell Osteogenesis.
Biomacromolecules. 2020 Dec 14;21(12):5323-5335. doi: 10.1021/acs.biomac.0c01408. Epub 2020 Nov 25.

引用本文的文献

3
Gadolinium-Conjugated Lipoic Acid Hydrogels for Magnetic Resonance Imaging.
ACS Appl Bio Mater. 2025 Jun 23. doi: 10.1021/acsabm.5c00584.
4
Emerging scaffold- and cellular-based strategies for brain tissue regeneration and imaging.
In Vitro Model. 2022 Mar 17;1(2):129-150. doi: 10.1007/s44164-022-00013-0. eCollection 2022 Apr.
5
Design Chemical Exchange Saturation Transfer Contrast Agents and Nanocarriers for Imaging Proton Exchange .
ACS Nano. 2024 Dec 17;18(50):33775-33791. doi: 10.1021/acsnano.4c05923. Epub 2024 Dec 6.
6
Hydrogel in the Treatment of Traumatic Brain Injury.
Biomater Res. 2024 Sep 26;28:0085. doi: 10.34133/bmr.0085. eCollection 2024.
7
A Futuristic Development in 3D Printing Technique Using Nanomaterials with a Step Toward 4D Printing.
ACS Omega. 2024 Aug 26;9(36):37445-37458. doi: 10.1021/acsomega.4c04123. eCollection 2024 Sep 10.
8
Immunoregulation in Skull Defect Repair with a Smart Hydrogel Loaded with Mesoporous Bioactive Glasses.
Biomater Res. 2024 Sep 6;28:0074. doi: 10.34133/bmr.0074. eCollection 2024.
9
Toward Fully Automated Personalized Orthopedic Treatments: Innovations and Interdisciplinary Gaps.
Bioengineering (Basel). 2024 Aug 12;11(8):817. doi: 10.3390/bioengineering11080817.
10
Dynamic monitoring soft tissue healing via visualized Gd-crosslinked double network MRI microspheres.
J Nanobiotechnology. 2024 May 27;22(1):289. doi: 10.1186/s12951-024-02549-7.

本文引用的文献

1
Visualization of in situ hydrogels by MRI in vivo.
J Mater Chem B. 2016 Feb 21;4(7):1343-1353. doi: 10.1039/c5tb02459e. Epub 2016 Jan 26.
4
Perfluorocarbon Labeling of Human Glial-Restricted Progenitors for F Magnetic Resonance Imaging.
Stem Cells Transl Med. 2019 Apr;8(4):355-365. doi: 10.1002/sctm.18-0094. Epub 2019 Jan 7.
6
Non-invasive monitoring of hydrogel degradation and cartilage regeneration by multiparametric MR imaging.
Theranostics. 2018 Jan 13;8(4):1146-1158. doi: 10.7150/thno.22514. eCollection 2018.
7
Enhanced bone regeneration and visual monitoring via superparamagnetic iron oxide nanoparticle scaffold in rats.
J Tissue Eng Regen Med. 2018 Apr;12(4):e2085-e2098. doi: 10.1002/term.2641. Epub 2018 Feb 6.
8
Visual in vivo degradation of injectable hydrogel by real-time and non-invasive tracking using carbon nanodots as fluorescent indicator.
Biomaterials. 2017 Nov;145:192-206. doi: 10.1016/j.biomaterials.2017.08.039. Epub 2017 Aug 26.
9
Overexpression of VLA-4 in glial-restricted precursors enhances their endothelial docking and induces diapedesis in a mouse stroke model.
J Cereb Blood Flow Metab. 2018 May;38(5):835-846. doi: 10.1177/0271678X17703888. Epub 2017 Apr 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验