Cortes Paulo R, Piñas Germán E, Cian Melina B, Yandar Nubia, Echenique Jose
Departamento de Bioquímica Clínica-CIBICI (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Cordoba, Medina Allende esq. Haya de la Torre, Ciudad Universitaria, CP, X5000HUA Cordoba, Argentina.
Departamento de Bioquímica Clínica-CIBICI (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Cordoba, Medina Allende esq. Haya de la Torre, Ciudad Universitaria, CP, X5000HUA Cordoba, Argentina.
Int J Med Microbiol. 2015 Jan;305(1):157-69. doi: 10.1016/j.ijmm.2014.12.002. Epub 2014 Dec 9.
Streptococcus pneumoniae is a major human pathogen that can survive to stress conditions, such as the acidic environment of inflammatory foci, and tolerates lethal pH through a mechanism known as the acid tolerance response. We previously described that S. pneumoniae activates acidic-stress induced lysis in response to acidified environments, favoring the release of cell wall compounds, DNA and virulence factors. Here, we demonstrate that F(0)F(1)-ATPase is involved in the response to acidic stress. Chemical inhibitors (DCCD, optochin) of this proton pump repressed the ATR induction, but caused an increased ASIL. Confirming these findings, mutants of the subunit c of this enzyme showed the same phenotypes as inhibitors. Importantly, we demonstrated that F(0)F(1)-ATPase and ATR are necessary for the intracellular survival of the pneumococcus in macrophages. Alternatively, a screening of two-component system (TCS) mutants showed that ATR and survival in pneumocytes were controlled in contrasting ways by ComDE and CiaRH, which had been involved in the ASIL mechanism. Briefly, CiaRH was essential for ATR (ComE represses activation) whereas ComE was necessary for ASIL (CiaRH protects against induction). They did not regulate F0F1-ATPase expression, but control LytA expression on the pneumococcal surface. These results suggest that both TCSs and F(0)F(1)-ATPase control a stress response and decide between a survival or a suicide mechanism by independent pathways, either in vitro or in pneumocyte cultures. This biological model contributes to the current knowledge about bacterial response under stress conditions in host tissues, where pathogens need to survive in order to establish infections.
肺炎链球菌是一种主要的人类病原体,能够在应激条件下存活,比如炎症病灶的酸性环境,并通过一种称为酸耐受反应的机制耐受致死性pH值。我们之前描述过,肺炎链球菌会在酸化环境中激活酸应激诱导的裂解,这有利于细胞壁化合物、DNA和毒力因子的释放。在此,我们证明F(0)F(1)-ATP酶参与了对酸性应激的反应。这种质子泵的化学抑制剂(二环己基碳二亚胺、奥普托欣)抑制了酸耐受反应的诱导,但导致酸应激诱导的裂解增加。证实这些发现的是,该酶亚基c的突变体表现出与抑制剂相同的表型。重要的是,我们证明F(0)F(1)-ATP酶和酸耐受反应对于肺炎球菌在巨噬细胞内的存活是必需的。另外,对双组分系统(TCS)突变体的筛选表明,酸耐受反应和肺炎细胞中的存活受到ComDE和CiaRH的不同控制,它们参与了酸应激诱导的裂解机制。简而言之,CiaRH对酸耐受反应是必需的(ComE抑制激活),而ComE对酸应激诱导的裂解是必需的(CiaRH防止诱导)。它们不调节F0F1-ATP酶的表达,但控制肺炎球菌表面LytA的表达。这些结果表明,双组分系统和F(0)F(1)-ATP酶都控制应激反应,并通过独立途径在存活或自杀机制之间做出决定,无论是在体外还是在肺炎细胞培养中。这种生物学模型有助于当前关于宿主组织应激条件下细菌反应的知识,在宿主组织中病原体需要存活才能建立感染。