Suppr超能文献

利用新型稳定化氧化锰纳米粒子降解水相和土壤吸附的雌二醇。

Degradation of aqueous and soil-sorbed estradiol using a new class of stabilized manganese oxide nanoparticles.

机构信息

Environmental Engineering Program, Department of Civil Engineering, Auburn University, Auburn, AL 36849, USA.

Environmental Engineering Program, Department of Civil Engineering, Auburn University, Auburn, AL 36849, USA.

出版信息

Water Res. 2015 Mar 1;70:288-99. doi: 10.1016/j.watres.2014.12.017. Epub 2014 Dec 17.

Abstract

Manganese oxide (MnO₂) was reported to be effective for degrading aqueous pharmaceutical chemicals. However, little is known about its potential use for degrading soil-sorbed contaminants. To bridge this knowledge gap, we synthesized, for the first time, a class of stabilized MnO₂ nanoparticles using carboxymethyl celluloses (CMC) as a stabilizer, and tested their effectiveness for degrading aqueous and soil-sorbed estradiol. The most desired particles (highest reactivity and soil deliverability) were obtained at a CMC/MnO₂ molar ratio of 1.39 × 10(-3), which yielded a mean hydrodynamic size of 39.5 nm and a narrow size distribution (SD = 0.8 nm). While non-stabilized MnO₂ particles rapidly aggregated and were not transportable through a soil column, CMC-stabilized nanoparticles remained fully dispersed in water and were soil deliverable. At typical aquatic pH (6-7), CMC-stabilized MnO₂ exhibited faster degradation kinetics for oxidation of 17β-estradiol than non-stabilized MnO₂. The reactivity advantage becomes more evident when used for treating soil-sorbed estradiol owing to the ability of CMC to complex with metal ions and prevent the reactive sites from binding with inhibitive soil components. A retarded first-order rate model was able to interpret the oxidation kinetics for CMC-stabilized MnO₂. When used for degrading soil-sorbed estradiol, several factors may inhibit the oxidation effectiveness, including desorption rate, soil-MnO₂ interactions, and soil-released metals and reductants. CMC-stabilized MnO₂ nanoparticles hold the potential for facilitating in situ oxidative degradation of various emerging contaminants in soil and groundwater.

摘要

氧化锰(MnO₂)已被报道可有效降解水中的药物化学物质。然而,对于其用于降解土壤吸附污染物的潜力却知之甚少。为了弥补这一知识空白,我们首次使用羧甲基纤维素(CMC)作为稳定剂合成了一类稳定的 MnO₂纳米颗粒,并测试了它们降解水中和土壤吸附的雌二醇的效果。在 CMC/MnO₂摩尔比为 1.39×10(-3)时,得到了最理想的颗粒(最高反应性和土壤传递性),其平均水动力直径为 39.5nm,且粒径分布较窄(SD=0.8nm)。虽然未稳定的 MnO₂颗粒迅速聚集且不能通过土壤柱传输,但 CMC 稳定的纳米颗粒在水中仍能完全分散且可传递至土壤中。在典型的水相 pH 值(6-7)下,CMC 稳定的 MnO₂对 17β-雌二醇的氧化表现出比未稳定的 MnO₂更快的降解动力学。由于 CMC 能够与金属离子络合并防止反应性位点与抑制性土壤成分结合,因此在处理土壤吸附的雌二醇时,CMC 稳定的 MnO₂的反应性优势更加明显。当用于降解土壤吸附的雌二醇时,可能有几个因素会抑制氧化效果,包括解吸速率、土壤-MnO₂相互作用以及土壤释放的金属和还原剂。CMC 稳定的 MnO₂纳米颗粒有望促进土壤和地下水中各种新兴污染物的原位氧化降解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验