National Institute of Advanced Industrial Science and Technology (AIST) , Ikeda, Osaka 563-8577, Japan.
J Am Chem Soc. 2015 Jan 14;137(1):106-9. doi: 10.1021/ja511511q. Epub 2015 Jan 2.
In this work, we have developed a non-noble metal sacrificial approach for the first time to successfully immobilize highly dispersed AgPd nanoparticles on reduced graphene oxide (RGO). The Co3(BO3)2 co-precipitated with AgPd nanoparticles and subsequently sacrificed by acid etching effectively prevents the primary AgPd particles from aggregation. The resulted ultrafine AgPd nanoparticles exhibit the highest activity (turnover frequency, 2739 h(-1) at 323 K) among all the heterogeneous catalysts for the dehydrogenation of formic acid to generate hydrogen without CO impurity. The sacrificial approach opens up a new avenue for the development of high-performance metal nanocatalysts.
在这项工作中,我们首次开发了一种非贵金属牺牲法,成功地将高度分散的 AgPd 纳米颗粒固定在还原氧化石墨烯(RGO)上。与 AgPd 纳米颗粒共沉淀的 Co3(BO3)2 随后被酸刻蚀牺牲,有效地阻止了原始 AgPd 颗粒的聚集。所得的超细 AgPd 纳米颗粒在所有用于甲酸脱氢生成氢气的多相催化剂中表现出最高的活性(在 323 K 时的周转频率为 2739 h(-1)),没有 CO 杂质。这种牺牲法为开发高性能金属纳米催化剂开辟了新途径。